Choice of Metric Divergence in Genome Sequence Comparison

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY The Protein Journal Pub Date : 2024-03-16 DOI:10.1007/s10930-024-10189-x
Soumen Ghosh, Jayanta Pal, Bansibadan Maji, Carlo Cattani, Dilip Kumar Bhattacharya
{"title":"Choice of Metric Divergence in Genome Sequence Comparison","authors":"Soumen Ghosh,&nbsp;Jayanta Pal,&nbsp;Bansibadan Maji,&nbsp;Carlo Cattani,&nbsp;Dilip Kumar Bhattacharya","doi":"10.1007/s10930-024-10189-x","DOIUrl":null,"url":null,"abstract":"<div><p>The paper introduces a novel probability descriptor for genome sequence comparison, employing a generalized form of Jensen-Shannon divergence. This divergence metric stems from a one-parameter family, comprising fractions up to a maximum value of half. Utilizing this metric as a distance measure, a distance matrix is computed for the new probability descriptor, shaping Phylogenetic trees via the neighbor-joining method. Initial exploration involves setting the parameter at half for various species. Assessing the impact of parameter variation, trees drawn at different parameter values (half, one-fourth, one-eighth). However, measurement scales decrease with parameter value increments, with higher similarity accuracy corresponding to lower scale values. Ultimately, the highest accuracy aligns with the maximum parameter value of half. Comparative analyses against previous methods, evaluating via Symmetric Distance (SD) values and rationalized perception, consistently favor the present approach's results. Notably, outcomes at the maximum parameter value exhibit the most accuracy, validating the method's efficacy against earlier approaches.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"259 - 273"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10189-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces a novel probability descriptor for genome sequence comparison, employing a generalized form of Jensen-Shannon divergence. This divergence metric stems from a one-parameter family, comprising fractions up to a maximum value of half. Utilizing this metric as a distance measure, a distance matrix is computed for the new probability descriptor, shaping Phylogenetic trees via the neighbor-joining method. Initial exploration involves setting the parameter at half for various species. Assessing the impact of parameter variation, trees drawn at different parameter values (half, one-fourth, one-eighth). However, measurement scales decrease with parameter value increments, with higher similarity accuracy corresponding to lower scale values. Ultimately, the highest accuracy aligns with the maximum parameter value of half. Comparative analyses against previous methods, evaluating via Symmetric Distance (SD) values and rationalized perception, consistently favor the present approach's results. Notably, outcomes at the maximum parameter value exhibit the most accuracy, validating the method's efficacy against earlier approaches.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组序列比较中度量分歧的选择。
本文介绍了一种用于基因组序列比较的新型概率描述符,它采用了一种广义的詹森-香农发散形式。这种发散度量源于一个参数系列,包括最大值为一半的分数。利用该指标作为距离度量,计算出新概率描述符的距离矩阵,并通过邻接法形成系统发生树。最初的探索包括将不同物种的参数设置为一半。评估参数变化的影响,以不同的参数值(一半、四分之一、八分之一)绘制系统树。然而,测量尺度随着参数值的增加而减小,较低的尺度值对应较高的相似性精确度。最终,最大参数值为一半时的准确度最高。通过对称距离(SD)值和合理化感知进行评估,与以前的方法进行比较分析,结果一致看好本方法。值得注意的是,最大参数值的结果显示出最高的准确度,这也验证了该方法与之前方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Protein Journal
The Protein Journal 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
57
审稿时长
12 months
期刊介绍: The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.
期刊最新文献
Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications HaloClass: Salt-Tolerant Protein Classification with Protein Language Models Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1