Investigating lipophilicity of boron dipyrromethenes using experimental and computational approaches

IF 2.218 Q2 Chemistry Chemical Data Collections Pub Date : 2024-03-11 DOI:10.1016/j.cdc.2024.101129
Matvey S. Horetski , Yuliya A. Chylik , Vladimir M. Shkumatov
{"title":"Investigating lipophilicity of boron dipyrromethenes using experimental and computational approaches","authors":"Matvey S. Horetski ,&nbsp;Yuliya A. Chylik ,&nbsp;Vladimir M. Shkumatov","doi":"10.1016/j.cdc.2024.101129","DOIUrl":null,"url":null,"abstract":"<div><p>BODIPY fluorescent dyes is a versatile class of molecules with a wide spectrum of applications, particularly in biological imaging and sensing. For these applications, lipophilicity is a critical factor that influences the compound's solubility, biodistribution, and biological interactions. This study investigated the synthesis and lipophilicity characterization of a series of BODIPY fluorescent dyes. The lipophilicity of the compounds was determined by high-performance liquid chromatography and compared to the predictions of theoretical methods. The results demonstrated the effectiveness of some fragment-based methods in BODIPY's lipophilicity calculation. The role of hydrophobic surface area in molecular lipophilicity was also investigated. The findings of this study provide insights into the structure-property relationships of BODIPY dyes and can be used to design derivatives with desired lipophilicity for specific applications.</p></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"51 ","pages":"Article 101129"},"PeriodicalIF":2.2180,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240583002400017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

BODIPY fluorescent dyes is a versatile class of molecules with a wide spectrum of applications, particularly in biological imaging and sensing. For these applications, lipophilicity is a critical factor that influences the compound's solubility, biodistribution, and biological interactions. This study investigated the synthesis and lipophilicity characterization of a series of BODIPY fluorescent dyes. The lipophilicity of the compounds was determined by high-performance liquid chromatography and compared to the predictions of theoretical methods. The results demonstrated the effectiveness of some fragment-based methods in BODIPY's lipophilicity calculation. The role of hydrophobic surface area in molecular lipophilicity was also investigated. The findings of this study provide insights into the structure-property relationships of BODIPY dyes and can be used to design derivatives with desired lipophilicity for specific applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用实验和计算方法研究二吡咯烷硼的亲油性
BODIPY 荧光染料是一类用途广泛的分子,特别是在生物成像和传感方面。在这些应用中,亲油性是影响化合物溶解度、生物分布和生物相互作用的关键因素。本研究调查了一系列 BODIPY 荧光染料的合成和亲油性特征。化合物的亲脂性由高效液相色谱法测定,并与理论方法的预测进行了比较。结果表明了一些基于片段的方法在计算 BODIPY 亲油性方面的有效性。此外,还研究了疏水表面积在分子亲油性中的作用。本研究的结果有助于深入了解 BODIPY 染料的结构-性质关系,并可用于设计具有理想亲油性的衍生物,以满足特定应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Data Collections
Chemical Data Collections Chemistry-Chemistry (all)
CiteScore
6.10
自引率
0.00%
发文量
169
审稿时长
24 days
期刊介绍: Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.
期刊最新文献
One-pot synthesis of multifunctional magnetic activated carbon from fallen saman leaves to activate persulfate for acid red 18 degradation Interfacial properties, and micellization of surface-active ionic liquid in presence of polymeric solutions Design, synthesis, characterization, invitro anticancer evaluation, computational studies, and in silico ADME assessment of New N-(5-o-tolyl-1,3,4-oxadiazol-2-yl) alkanamides Chemical characterization, antioxidant activity and toxicity of sugars present in Annona cornifolia (Annonaceae) seeds A rapid, efficient microwave-assisted synthesis of novel bis-pyrazole analogues using non-toxic and cost-effective catalyst under green solvent medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1