首页 > 最新文献

Chemical Data Collections最新文献

英文 中文
Methylparaben adsorption on calcined layered double hydroxides: Kinetics and isotherm modeling
IF 2.218 Q2 Chemistry Pub Date : 2025-03-10 DOI: 10.1016/j.cdc.2025.101187
N'guadi Blaise Allou , Patrick Athéba , Jitu Saikia , Kidjoufol Abdoul-Aziz Soro , Aimé Serge Ello
This work aimed to study and model methylparaben (MPB) adsorption on calcined Mg/Al layered double hydroxides (LDH). After the precursor LDH synthesis followed by their calcination completed, adsorption tests were carried out by studying contact time, initial MPB concentration and temperature effects. Data collected from these tests were used to model MPB adsorption mechanism, both in terms of kinetics and isotherm, using several mathematical models. Although pseudo−first−order, Elovich and Bangham models presented acceptable correlation coefficient values, those of pseudo−second−order were much better, indicating that MPB adsorption process on calcined LDH did not follow interstitial diffusion. However, adsorption process would also be limited by extra−particle transport according to Boyd model. As for adsorption isotherm modeling, correlation coefficients comparison added to separation factor RL (between 0 and 1) and adsorption intensity n (greater than 1) calculated values, it can be retain that Langmuir and Freundlich models indicated favorable adsorption. In addition, the maximum adsorption capacity obtained through Langmuir model was 52.63 mg g−1. Furthermore, from energy point of view, Temkin model would also be suitable to describe MPB adsorption phenomenon on calcined LDH. The latter indicates that adsorption process was exothermic.
{"title":"Methylparaben adsorption on calcined layered double hydroxides: Kinetics and isotherm modeling","authors":"N'guadi Blaise Allou ,&nbsp;Patrick Athéba ,&nbsp;Jitu Saikia ,&nbsp;Kidjoufol Abdoul-Aziz Soro ,&nbsp;Aimé Serge Ello","doi":"10.1016/j.cdc.2025.101187","DOIUrl":"10.1016/j.cdc.2025.101187","url":null,"abstract":"<div><div>This work aimed to study and model methylparaben (MPB) adsorption on calcined Mg/Al layered double hydroxides (LDH). After the precursor LDH synthesis followed by their calcination completed, adsorption tests were carried out by studying contact time, initial MPB concentration and temperature effects. Data collected from these tests were used to model MPB adsorption mechanism, both in terms of kinetics and isotherm, using several mathematical models. Although pseudo−first−order, Elovich and Bangham models presented acceptable correlation coefficient values, those of pseudo−second−order were much better, indicating that MPB adsorption process on calcined LDH did not follow interstitial diffusion. However, adsorption process would also be limited by extra−particle transport according to Boyd model. As for adsorption isotherm modeling, correlation coefficients comparison added to separation factor <span><math><msub><mi>R</mi><mi>L</mi></msub></math></span> (between 0 and 1) and adsorption intensity <span><math><mi>n</mi></math></span> (greater than 1) calculated values, it can be retain that Langmuir and Freundlich models indicated favorable adsorption. In addition, the maximum adsorption capacity obtained through Langmuir model was 52.63 mg g<sup>−1</sup>. Furthermore, from energy point of view, Temkin model would also be suitable to describe MPB adsorption phenomenon on calcined LDH. The latter indicates that adsorption process was exothermic.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"57 ","pages":"Article 101187"},"PeriodicalIF":2.218,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NBO, NLO and TD-DFT study of homoleptic iron complex derived from dodecyl benzene sulfonate bidentate ligand
IF 2.218 Q2 Chemistry Pub Date : 2025-03-06 DOI: 10.1016/j.cdc.2025.101186
Houari Brahim , Djebar Hadji , Zahia Zizi , Abdelkrim Guendouzi , Mostefa Boumediene
In this study, we investigated structural, optical, nonlinear optical and spectroscopic properties of iron ion coordinated with three bidentate ligands based on dodecyl benzene sulfonate (DBS) using DFT and TD-DFT methods. Coordination properties between iron ion and the three bidentate ligands were studied using NBO analysis. The interactions involved in the complexation were identified according to second order perturbation analysis of the NBO Fock matrix. UV–vis absorption spectra were simulated and investigated in term of NTO analyzes. It was found that the intense absorptions occur between phenyl and metal orbitals. The results show the complex exhibits efficient hyper-Rayleigh scattering hyperpolarizability. This investigation showed the potential of this complex based on DBS as nonlinear optical candidate.
{"title":"NBO, NLO and TD-DFT study of homoleptic iron complex derived from dodecyl benzene sulfonate bidentate ligand","authors":"Houari Brahim ,&nbsp;Djebar Hadji ,&nbsp;Zahia Zizi ,&nbsp;Abdelkrim Guendouzi ,&nbsp;Mostefa Boumediene","doi":"10.1016/j.cdc.2025.101186","DOIUrl":"10.1016/j.cdc.2025.101186","url":null,"abstract":"<div><div>In this study, we investigated structural, optical, nonlinear optical and spectroscopic properties of iron ion coordinated with three bidentate ligands based on dodecyl benzene sulfonate (DBS) using DFT and TD-DFT methods. Coordination properties between iron ion and the three bidentate ligands were studied using NBO analysis. The interactions involved in the complexation were identified according to second order perturbation analysis of the NBO Fock matrix. UV–vis absorption spectra were simulated and investigated in term of NTO analyzes. It was found that the intense absorptions occur between phenyl and metal orbitals. The results show the complex exhibits efficient hyper-Rayleigh scattering hyperpolarizability. This investigation showed the potential of this complex based on DBS as nonlinear optical candidate.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"57 ","pages":"Article 101186"},"PeriodicalIF":2.218,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of aryl amide derivatives of pyridine-imidazo[1,2-a]pyrazine-oxazole as anticancer agents
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2024.101176
Narendhar Reddy Vanam , Prakash Gadipelli , Jaya Shree Anireddy
A new series of aryl amide derivatives of pyridine-imidazo[1,2-a]pyrazine-oxazoles (15a-j) has been designed, synthesized and screened for their anticancer activity against MCF-7 (human breast cancer), A549 (human lung cancer), Colo-205 (human colon cancer) and A2780 (human ovarian cancer) cell lines by using MTT reduction assay protocol with etoposide (Etoposide) as standard drug. Among the synthesized derivatives, the compound 15a with trimethoxy electron donating substituent showed potent anticancer activity against MCF-7, A549, Colo-205, and A2780 cell lines with IC50 values of 0.03 ± 0.0043 µM; 0.02 ± 0.0077 µM; 0.12 ± 0.066 µM; and 0.17 ± 0.059 µM respectively.
{"title":"Synthesis and biological evaluation of aryl amide derivatives of pyridine-imidazo[1,2-a]pyrazine-oxazole as anticancer agents","authors":"Narendhar Reddy Vanam ,&nbsp;Prakash Gadipelli ,&nbsp;Jaya Shree Anireddy","doi":"10.1016/j.cdc.2024.101176","DOIUrl":"10.1016/j.cdc.2024.101176","url":null,"abstract":"<div><div>A new series of aryl amide derivatives of pyridine-imidazo[1,2-a]pyrazine-oxazoles <strong>(15a-j)</strong> has been designed, synthesized and screened for their anticancer activity against MCF-7 (human breast cancer), A549 (human lung cancer), Colo-205 (human colon cancer) and A2780 (human ovarian cancer) cell lines by using MTT reduction assay protocol with etoposide (Etoposide) as standard drug. Among the synthesized derivatives, the compound <strong>15a</strong> with trimethoxy electron donating substituent showed potent anticancer activity against MCF-7, A549, Colo-205, and A2780 cell lines with IC<sub>50</sub> values of 0.03 ± 0.0043 µM; 0.02 ± 0.0077 µM; 0.12 ± 0.066 µM; and 0.17 ± 0.059 µM respectively.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101176"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An insight into bactericidal, fungicidal, larvicidal and molecular docking studies of ruthenium(III) Schiff base complexes
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2025.101179
Sindhu Yesodharan , Bini Babu Sujatha , Pooja Parvathy Rajan , Sujamol Mathunny Susamma , Athira Chempakam Janardhanan , Praveen Kumar , Selwin Joseyphus Raphael , Mohanan Kochukittan
This study presents the synthesis, molecular modelling, antibacterial, antifungal, larvicidal potential, and molecular docking studies of Ru(III) complexes derived from the Schiff bases, with six amino acids (glycine/α-alanine/phenylalanine/leucine/histidine/tryptophan) and 2‑hydroxy-1-naphthaldehyde. The chelation of the complexes has been explored using FT-IR, UV–Vis., and NMR spectral data. Furthermore, electrochemical, and magnetic studies favoured complexes' redox and coordination behaviour. The molar conductance values proved the non-electrolytic nature of the octahedral Ru(III) complexes. Comprehensive biological studies indicate that the Ru(III) complexes exhibit significant antibacterial activity against the gram-positive bacterium, Staphylococcus aureus. The complexes also exhibited enhanced larvicidal activity against Culex quinquefasciatus mosquito larvae. Correlation analysis of the larvicidal potentials has revealed the impact of the structural features on activity. The 3-D modelling of a few selected ligands and their complexes was also investigated. Molecular docking studies on the active site of different proteins also provided insights into the activities of the complexes. The results presented satisfactory -CDOCKER values for [Ru(III)-(NAA4)Cl(PPh3)2] and [Ru(III)-(NAA5)Cl(PPh3)2] suggesting a good binding affinity between the protein and the complexes.
{"title":"An insight into bactericidal, fungicidal, larvicidal and molecular docking studies of ruthenium(III) Schiff base complexes","authors":"Sindhu Yesodharan ,&nbsp;Bini Babu Sujatha ,&nbsp;Pooja Parvathy Rajan ,&nbsp;Sujamol Mathunny Susamma ,&nbsp;Athira Chempakam Janardhanan ,&nbsp;Praveen Kumar ,&nbsp;Selwin Joseyphus Raphael ,&nbsp;Mohanan Kochukittan","doi":"10.1016/j.cdc.2025.101179","DOIUrl":"10.1016/j.cdc.2025.101179","url":null,"abstract":"<div><div>This study presents the synthesis, molecular modelling, antibacterial, antifungal, larvicidal potential, and molecular docking studies of Ru(III) complexes derived from the Schiff bases, with six amino acids (glycine/α-alanine/phenylalanine/leucine/histidine/tryptophan) and 2‑hydroxy-1-naphthaldehyde. The chelation of the complexes has been explored using FT-IR, UV–Vis., and NMR spectral data. Furthermore, electrochemical, and magnetic studies favoured complexes' redox and coordination behaviour. The molar conductance values proved the non-electrolytic nature of the octahedral Ru(III) complexes. Comprehensive biological studies indicate that the Ru(III) complexes exhibit significant antibacterial activity against the gram-positive bacterium, <em>Staphylococcus aureus.</em> The complexes also exhibited enhanced larvicidal activity against <em>Culex quinquefasciatus</em> mosquito larvae. Correlation analysis of the larvicidal potentials has revealed the impact of the structural features on activity. The 3-D modelling of a few selected ligands and their complexes was also investigated. Molecular docking studies on the active site of different proteins also provided insights into the activities of the complexes. The results presented satisfactory -CDOCKER values for [Ru(III)-(NAA<em><sup>4</sup></em>)Cl(PPh<sub>3</sub>)<sub>2</sub>] and [Ru(III)-(NAA<em><sup>5</sup></em>)Cl(PPh<sub>3</sub>)<sub>2</sub>] suggesting a good binding affinity between the protein and the complexes.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101179"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive investigation on synthesis, computational, antioxidant, antimicrobial, and bio-imaging studies of salicylaldehyde-based Schiff bases
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2025.101184
Unnati P. Patel , Shweta P. Thakar , Krishna Desai , Ranjitsinh C. Dabhi , Suryajit L. Rathod , Pranav S. Shrivastav , Jayesh J. Maru
The escalating resistance to antimicrobial drugs has become a significant public health concern, presenting significant challenges to the treatment and control of bacterial infections, thereby calling for the development of novel antimicrobial agents. Previous studies have reported diverse biological applications of Schiff bases, including antimicrobial, antiviral, and antimalarial. In that regard, we synthesized a series of salicylaldehyde-based Schiff base derivatives and analyzed their chemical structures using IR spectroscopy, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. The synthesized compounds were evaluated for their antimicrobial and antioxidant activities. Further, computational molecular docking was used to assess the drug-likeness properties of seventeen newly synthesized Schiff bases. These compounds were tested against two bacterial protein targets, namely PDB ID: 3UDI and 4CJN. Additionally, molecular dynamics simulations of over 100 ns were performed to monitor the complex's behavior and assess its stability over time. The outcomes revealed that the simulated complex remained stable throughout the simulation period. Moreover, the compounds CF5 and CF15 were then employed for bio-imaging studies using nematodes as a model organism.
{"title":"Comprehensive investigation on synthesis, computational, antioxidant, antimicrobial, and bio-imaging studies of salicylaldehyde-based Schiff bases","authors":"Unnati P. Patel ,&nbsp;Shweta P. Thakar ,&nbsp;Krishna Desai ,&nbsp;Ranjitsinh C. Dabhi ,&nbsp;Suryajit L. Rathod ,&nbsp;Pranav S. Shrivastav ,&nbsp;Jayesh J. Maru","doi":"10.1016/j.cdc.2025.101184","DOIUrl":"10.1016/j.cdc.2025.101184","url":null,"abstract":"<div><div>The escalating resistance to antimicrobial drugs has become a significant public health concern, presenting significant challenges to the treatment and control of bacterial infections, thereby calling for the development of novel antimicrobial agents. Previous studies have reported diverse biological applications of Schiff bases, including antimicrobial, antiviral, and antimalarial. In that regard, we synthesized a series of salicylaldehyde-based Schiff base derivatives and analyzed their chemical structures using IR spectroscopy, <sup>1</sup>H NMR, <sup>13</sup>C NMR, mass spectrometry, and elemental analysis. The synthesized compounds were evaluated for their antimicrobial and antioxidant activities. Further, computational molecular docking was used to assess the drug-likeness properties of seventeen newly synthesized Schiff bases. These compounds were tested against two bacterial protein targets, namely PDB ID: <span><span>3UDI</span><svg><path></path></svg></span> and <span><span>4CJN</span><svg><path></path></svg></span>. Additionally, molecular dynamics simulations of over 100 ns were performed to monitor the complex's behavior and assess its stability over time. The outcomes revealed that the simulated complex remained stable throughout the simulation period. Moreover, the compounds <strong>CF5</strong> and <strong>CF15</strong> were then employed for bio-imaging studies using nematodes as a model organism.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"56 ","pages":"Article 101184"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of chalcone incorporated thaizole-isoxazole derivatives as anticancer agents
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2024.101177
B. Chaithanya , D. Prabhakara Chary , Venkateshwara Rao Anna
A new series of chalcone derivatives of thaizole-isoxazole derivatives (11a-j) and their chemical structures were characterized by 1HNMR, 13CNMR and mass spectral data. Further, all derivatives were investigated for their preliminary anticancer activity towards four human cancer cell lines such as MCF-7 (human breast cancer), A549 (human lung cancer), Colo-205 (human colon cancer) & A2780 (human ovarian cancer) by employing the MTT assay. Most of the tested compounds displayed remarkable anticancer activity compared to the positive control (etoposide). Among the various tested derivatives, five compounds 11a, 11 g, 11 h, 11i&11j exhibited more potent activity. Particularly, one compound 11j displayed the most promising activity (MCF-7 = 0.33 ± 0.085 µM; A549 = 0.12 ± 0.064 µM; Colo-205 = 0.77 ± 0.075 µM& A2780 = 0.93 ± 0.082 µM)..
{"title":"Synthesis and biological evaluation of chalcone incorporated thaizole-isoxazole derivatives as anticancer agents","authors":"B. Chaithanya ,&nbsp;D. Prabhakara Chary ,&nbsp;Venkateshwara Rao Anna","doi":"10.1016/j.cdc.2024.101177","DOIUrl":"10.1016/j.cdc.2024.101177","url":null,"abstract":"<div><div>A new series of chalcone derivatives of thaizole-isoxazole derivatives (<strong>11a-j</strong>) and their chemical structures were characterized by 1HNMR, 13CNMR and mass spectral data. Further, all derivatives were investigated for their preliminary anticancer activity towards four human cancer cell lines such as MCF-7 (human breast cancer), A549 (human lung cancer), Colo-205 (human colon cancer) &amp; A2780 (human ovarian cancer) by employing the MTT assay. Most of the tested compounds displayed remarkable anticancer activity compared to the positive control (etoposide). Among the various tested derivatives, five compounds <strong>11a,</strong> 11 g<strong>,</strong> 11 h<strong>, 11i</strong>&amp;<strong>11j</strong> exhibited more potent activity. Particularly, one compound <strong>11j</strong> displayed the most promising activity (MCF-7 = 0.33 ± 0.085 µM; A549 = 0.12 ± 0.064 µM; Colo-205 = 0.77 ± 0.075 µM&amp; A2780 = 0.93 ± 0.082 µM)..</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101177"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of biological potent novel 3-(3,5-bis(trifluoromethyl) phenyl)-N-aryl-1,8-naphthyridine derivatives and in vitro antimicrobial, and anticancer activity
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2024.101171
Kasaboina Kalyani Priya, Kavati Shireesha, Kumara Swamy Jella
A straight forward and efficient green method has been outlined for the construction of 3-(3,5-bis(trifluoromethyl)phenyl)-N-aryl-1,8-naphthyridin-2-amines in the presence of [Pd(PPh3)4] catalyst accomplished excellent yields in short reaction time. The compounds exhibited strongest antibacterial activity against pathogenic cell lines Staphylococcus aureus (22.5 mm, 35.5 mm), Escherichia coli (31.5 mm, 37.5 mm), and antifungal cell lines Candida albicans (35.5 mm, 35 mm), Aspergillus Niger (38.5 mm, 41.5 mm) compared with clinical drugs. Anticancer activity was conducted against cancer cell lines (breast (MCF7), SiHa (human cervix cancer cell line), and A549 cells (lung carcinoma epithelial cells). Results showed that the compounds 8h, 8d and 8i are most cytotoxic to all three cancer cell lines. IC50 valves of these molecules exhibited significant activity against cancer cell lines MCF7 (13.45 ± 0.06, 15.20 ± 0.04), SiHa (14.32 ± 0.48, 18.25 ± 0.36), and A549 (16.23 ± 0.41, 18.26 ± 0.11). To further understand molecular docking studies were conducted. The docking scores suggested strong binding affinities, and specificity for c-Met target protein.
{"title":"Synthesis of biological potent novel 3-(3,5-bis(trifluoromethyl) phenyl)-N-aryl-1,8-naphthyridine derivatives and in vitro antimicrobial, and anticancer activity","authors":"Kasaboina Kalyani Priya,&nbsp;Kavati Shireesha,&nbsp;Kumara Swamy Jella","doi":"10.1016/j.cdc.2024.101171","DOIUrl":"10.1016/j.cdc.2024.101171","url":null,"abstract":"<div><div>A straight forward and efficient green method has been outlined for the construction of 3-(3,5-bis(trifluoromethyl)phenyl)-N-aryl-1,8-naphthyridin-2-amines in the presence of [Pd(PPh<sub>3</sub>)<sub>4</sub>] catalyst accomplished excellent yields in short reaction time. The compounds exhibited strongest antibacterial activity against pathogenic cell lines <em>Staphylococcus aureus</em> (22.5 mm, 35.5 mm), <em>Escherichia coli</em> (31.5 mm, 37.5 mm), and antifungal cell lines <em>Candida albicans</em> (35.5 mm, 35 mm), <em>Aspergillus Niger</em> (38.5 mm, 41.5 mm) compared with clinical drugs. Anticancer activity was conducted against cancer cell lines (breast (MCF7), SiHa (human cervix cancer cell line), and A549 cells (lung carcinoma epithelial cells). Results showed that the compounds <strong>8h, 8d</strong> and <strong>8i</strong> are most cytotoxic to all three cancer cell lines. IC<sub>50</sub> valves of these molecules exhibited significant activity against cancer cell lines MCF7 (13.45 ± 0.06, 15.20 ± 0.04), SiHa (14.32 ± 0.48, 18.25 ± 0.36), and A549 (16.23 ± 0.41, 18.26 ± 0.11). To further understand molecular docking studies were conducted. The docking scores suggested strong binding affinities, and specificity for c-Met target protein.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101171"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of electrode material (aluminium and stainless steel) for treatment by electrocoagulation of Vinasse liquid from sugar beet industry
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2025.101180
Samia Elbouatlaoui, Nadia Dkhireche, Iman Chaouki
The treatment of industrial wastewater has seen significant advancements in technology. Among these industries, the molasses sector has become one of the most rapidly growing economic segments worldwide. The industrial waste generated, particularly vinasse, is rich in organic matter and exhibits pollution levels that far exceed acceptable discharge standards for surface waters. This study focuses on treating vinasse using the electrocoagulation technique, employing aluminum and iron electrodes. Current densities of 0.01, 0.025, and 0.05 A/cm² were applied to assess their efficiency in treating vinasse effluent. Operating parameters such as pH, conductivity, and electrode dissolution kinetics were monitored. High abatement rates were achieved at 0.05 A/cm² for both electrode types. Turbidity was reduced with an efficiency of 64 % for the aluminum electrode and 61 % for the iron electrode, while the chemical oxygen demand was decreased by 69 % and 72 %, respectively. Monitoring the dissolution kinetics of the electrodes over 8 h demonstrated that similar efficiency levels could be achieved with reduced electrolysis time and increased current density. The treated water was partially treated and requires further biological treatment to meet discharge standards or for safe reuse.
{"title":"Comparative study of electrode material (aluminium and stainless steel) for treatment by electrocoagulation of Vinasse liquid from sugar beet industry","authors":"Samia Elbouatlaoui,&nbsp;Nadia Dkhireche,&nbsp;Iman Chaouki","doi":"10.1016/j.cdc.2025.101180","DOIUrl":"10.1016/j.cdc.2025.101180","url":null,"abstract":"<div><div>The treatment of industrial wastewater has seen significant advancements in technology. Among these industries, the molasses sector has become one of the most rapidly growing economic segments worldwide. The industrial waste generated, particularly vinasse, is rich in organic matter and exhibits pollution levels that far exceed acceptable discharge standards for surface waters. This study focuses on treating vinasse using the electrocoagulation technique, employing aluminum and iron electrodes. Current densities of 0.01, 0.025, and 0.05 A/cm² were applied to assess their efficiency in treating vinasse effluent. Operating parameters such as pH, conductivity, and electrode dissolution kinetics were monitored. High abatement rates were achieved at 0.05 A/cm² for both electrode types. Turbidity was reduced with an efficiency of 64 % for the aluminum electrode and 61 % for the iron electrode, while the chemical oxygen demand was decreased by 69 % and 72 %, respectively. Monitoring the dissolution kinetics of the electrodes over 8 h demonstrated that similar efficiency levels could be achieved with reduced electrolysis time and increased current density. The treated water was partially treated and requires further biological treatment to meet discharge standards or for safe reuse.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101180"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amodiaquine sequestration using cocoa pod based activated carbon
IF 2.218 Q2 Chemistry Pub Date : 2025-02-01 DOI: 10.1016/j.cdc.2024.101178
Ayanfejesu Heritage Odebunmi , Misbaudeen Abdul-Hammed , Olugbenga Solomon Bello
Cocoa pod-activated carbon (CPAC) was used as adsorbent for the removal of amodiaquine from aqueous solution in this study. Orthophosphoric acid (H3PO4) was used to modify the raw cocoa pod (RCP) to enhance its adsorptive properties. It was observed that the adsorption data was best described by the Langmuir isotherm having a qm value of 321.33 mgg-1. Pseudo Second Order (PSO) best fitted the adsorption data with R2 tending towards 1, with a low SSE value and high agreement between qe, cal and qe, exp values. Thermodynamic study gave negative value of ΔGo, positive value of ΔHo and Ea value which is greater than 80 kJ mol−1 , this confirms that the interaction is chemisorption in nature. Cost analysis shows that CPAC was about eight times cheaper than the commercial activated carbon (CAC). CPAC is a viable and affordable option for AMO removal from the wastewater
{"title":"Amodiaquine sequestration using cocoa pod based activated carbon","authors":"Ayanfejesu Heritage Odebunmi ,&nbsp;Misbaudeen Abdul-Hammed ,&nbsp;Olugbenga Solomon Bello","doi":"10.1016/j.cdc.2024.101178","DOIUrl":"10.1016/j.cdc.2024.101178","url":null,"abstract":"<div><div>Cocoa pod-activated carbon (CPAC) was used as adsorbent for the removal of amodiaquine from aqueous solution in this study. Orthophosphoric acid (H<sub>3</sub>PO<sub>4</sub>) was used to modify the raw cocoa pod (RCP) to enhance its adsorptive properties. It was observed that the adsorption data was best described by the Langmuir isotherm having a q<sub>m</sub> value of 321.33 mgg<sup>-1</sup>. Pseudo Second Order (PSO) best fitted the adsorption data with R<sup>2</sup> tending towards 1, with a low SSE value and high agreement between q<sub>e, cal</sub> and q<sub>e, exp</sub> values. Thermodynamic study gave negative value of ΔG<sup>o,</sup> positive value of ΔH<sup>o</sup> and E<sub>a</sub> value which is greater than 80 kJ mol<sup>−1</sup> , this confirms that the interaction is chemisorption in nature. Cost analysis shows that CPAC was about eight times cheaper than the commercial activated carbon (CAC). CPAC is a viable and affordable option for AMO removal from the wastewater</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"55 ","pages":"Article 101178"},"PeriodicalIF":2.218,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143143360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of 3-methyl-2,6-diphenyl-1-(2-thiocyanatoacetyl)piperidin-4-one: A combined experimental and theoretical study
IF 2.218 Q2 Chemistry Pub Date : 2025-01-28 DOI: 10.1016/j.cdc.2025.101183
Karthiga A. R , Divyabharathi S , Reshwen Shalo R , Rajeswari K , Vidhyasagar T
The structure of 3-methyl-2,6-diphenyl-1-(2-thiocyanatoacetyl)piperidin-4-one (3) was elucidated through single-crystal X-ray diffraction, revealing a distorted boat conformation of the piperidine ring. Phenyl and methyl groups occupy equatorial positions, with another phenyl group positioned axially. Molecular packing is stabilized by C–H⋯N, C–H⋯O and C–H⋯π interactions. DFT optimization at the B3LYP/6–311++G(d, p) level showed excellent agreement with experimental geometry, validating the model. HOMO-LUMO analysis revealed the electronic properties, while Mulliken charge and MEP identified reactivity and binding sites. Hirshfeld surface analysis quantified intermolecular interactions, highlighting H⋯H contacts (41.8 %), with energy framework analysis emphasizing dispersion forces. Docking studies with 3ERT protein demonstrated favorable interactions, supporting its anticancer potential. ADME predictions confirmed a suitable pharmacokinetic profile, underscoring its drug development potential. This study integrates crystallographic, computational, and biological evaluations showcasing the structural and therapeutic significance of the compound.
{"title":"Crystal structure of 3-methyl-2,6-diphenyl-1-(2-thiocyanatoacetyl)piperidin-4-one: A combined experimental and theoretical study","authors":"Karthiga A. R ,&nbsp;Divyabharathi S ,&nbsp;Reshwen Shalo R ,&nbsp;Rajeswari K ,&nbsp;Vidhyasagar T","doi":"10.1016/j.cdc.2025.101183","DOIUrl":"10.1016/j.cdc.2025.101183","url":null,"abstract":"<div><div>The structure of 3-methyl-2,6-diphenyl-1-(2-thiocyanatoacetyl)piperidin-4-one <strong>(3)</strong> was elucidated through single-crystal X-ray diffraction, revealing a distorted boat conformation of the piperidine ring. Phenyl and methyl groups occupy equatorial positions, with another phenyl group positioned axially. Molecular packing is stabilized by C–H⋯N, C–H⋯O and C–H⋯π interactions. DFT optimization at the B3LYP/6–311++G(d, p) level showed excellent agreement with experimental geometry, validating the model. HOMO-LUMO analysis revealed the electronic properties, while Mulliken charge and MEP identified reactivity and binding sites. Hirshfeld surface analysis quantified intermolecular interactions, highlighting H⋯H contacts (41.8 %), with energy framework analysis emphasizing dispersion forces. Docking studies with <em>3ERT</em> protein demonstrated favorable interactions, supporting its anticancer potential. ADME predictions confirmed a suitable pharmacokinetic profile, underscoring its drug development potential. This study integrates crystallographic, computational, and biological evaluations showcasing the structural and therapeutic significance of the compound.</div></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"56 ","pages":"Article 101183"},"PeriodicalIF":2.218,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Data Collections
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1