Novel adaptive observer for HVDC transmission line: A new power management approach for renewable energy sources involving Vienna rectifier

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-03-01 DOI:10.1016/j.ifacsc.2024.100255
Adil Mansouri , Abdelmounime El Magri , Rachid Lajouad , Fouad Giri
{"title":"Novel adaptive observer for HVDC transmission line: A new power management approach for renewable energy sources involving Vienna rectifier","authors":"Adil Mansouri ,&nbsp;Abdelmounime El Magri ,&nbsp;Rachid Lajouad ,&nbsp;Fouad Giri","doi":"10.1016/j.ifacsc.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel approach to control and manage energy production based on grid requirements. The main challenge is the distance between the load and production area, making it difficult to quantify energy requirements in real time at the production area. To overcome this challenge, the proposed approach relies on an adaptive observer design that provides accurate and reliable estimates of multiple signals without expensive and unreliable sensors. In this study, a renewable energy source that consists of a wind turbine coupled to a permanent magnet synchronous generator is actuated with a Vienna power converter. However, it is crucial to emphasize that this approach can be implemented at any production site, regardless of its nature. The paper’s main contribution is the design of a novel adaptive high-gain observer that estimates the grid energy requirement based on the voltage value at the endpoint of the high-voltage direct current line. Moreover, the system load parameters are unknown and come non-linear in the system model. Simulations and analysis demonstrate the effectiveness of the proposed observer, showing convergence to the origin under the well-established condition of persistent excitation (PE).</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100255"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel approach to control and manage energy production based on grid requirements. The main challenge is the distance between the load and production area, making it difficult to quantify energy requirements in real time at the production area. To overcome this challenge, the proposed approach relies on an adaptive observer design that provides accurate and reliable estimates of multiple signals without expensive and unreliable sensors. In this study, a renewable energy source that consists of a wind turbine coupled to a permanent magnet synchronous generator is actuated with a Vienna power converter. However, it is crucial to emphasize that this approach can be implemented at any production site, regardless of its nature. The paper’s main contribution is the design of a novel adaptive high-gain observer that estimates the grid energy requirement based on the voltage value at the endpoint of the high-voltage direct current line. Moreover, the system load parameters are unknown and come non-linear in the system model. Simulations and analysis demonstrate the effectiveness of the proposed observer, showing convergence to the origin under the well-established condition of persistent excitation (PE).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高压直流输电线路的新型自适应观测器:涉及维也纳整流器的可再生能源电力管理新方法
本文提出了一种根据电网要求控制和管理能源生产的新方法。主要挑战在于负载与生产区域之间的距离,这使得生产区域难以实时量化能源需求。为了克服这一挑战,所提出的方法依赖于自适应观测器设计,无需昂贵且不可靠的传感器,就能对多个信号进行准确可靠的估计。在这项研究中,由风力涡轮机和永磁同步发电机组成的可再生能源通过维也纳功率转换器进行驱动。不过,必须强调的是,这种方法可以在任何生产现场实施,无论其性质如何。本文的主要贡献在于设计了一种新型自适应高增益观测器,该观测器可根据高压直流电线端点的电压值估算电网能量需求。此外,系统负载参数是未知的,并且在系统模型中是非线性的。仿真和分析表明了所提出的观测器的有效性,显示了在持久励磁(PE)条件下对原点的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
On the turnpike to design of deep neural networks: Explicit depth bounds Finite-time event-triggered tracking control for quadcopter attitude systems with zero compensation technology Efficiency criteria and dual techniques for some nonconvex multiple cost minimization models Analysis of Hyers–Ulam stability and controllability of non-linear switched impulsive systems with delays on time scales Design of fixed-time sliding mode control using variable exponents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1