Symbiotic fungi from a wild grass (Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-13 DOI:10.1093/aobpla/plae013
Iñigo Zabalgogeazcoa, Juan B Arellano, Elena Mellado-Ortega, Francisco Barro, Ana Martinez-Castilla, Virginia Gonzalez-Blanco, Beatriz R Vázquez de Aldana
{"title":"Symbiotic fungi from a wild grass (Celtica gigantea) increase the growth, grain yield and quality of tritordeum under field conditions","authors":"Iñigo Zabalgogeazcoa, Juan B Arellano, Elena Mellado-Ortega, Francisco Barro, Ana Martinez-Castilla, Virginia Gonzalez-Blanco, Beatriz R Vázquez de Aldana","doi":"10.1093/aobpla/plae013","DOIUrl":null,"url":null,"abstract":"Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum x Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum x Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在田间条件下,来自野生草(Celtica gigantea)的共生真菌能提高三叶草的生长、谷物产量和质量
植物与许多微生物共生,这可能有助于植物的适应和表现。在这项研究中,我们测试了与大叶芹(一种适应半干旱地区营养不良土壤的野生草)根系共生的真菌菌株能否改善农用谷物大叶芹(Triticum durum x Hordeum chilense)的田间表现。在三棱草幼苗中接种了 12 种不同的真菌菌株,这些菌株是从大叶芹根部分离出来的,首次被证明在温室条件下能促进三棱草植株的生长。接种后的幼苗被移栽到伊比利亚半岛平均温度和降水量属于不同气候带的两个地点的田间小块中。在一个地点,只有一种菌株 Diaporthe iberica T6 对株高、分蘖数和谷物产量有显著影响。这一结果表明,温室试验和田间试验的结果存在很大差异。在谷物营养品质方面,两个地点的一些参数受到不同的影响:Diaporthe T6、Pleosporales T7、Zygomycota T29 和 Zygomycota T80 增加了寒冷地区总类胡萝卜素的含量,主要是叶黄素;而在温暖地区,谷蛋白在几种处理中都有所增加。总之,给三叶草植株早期接种真菌共生体对植株随后的田间生长和发育有很大的益处。在谷物营养质量方面,接种的效果受到两地农业气候差异的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1