{"title":"An energy efficient data fault prediction based clustering and routing protocol using hybrid ASSO with MERNN in wireless sensor network","authors":"G. Mahalakshmi, S. Ramalingam, A. Manikandan","doi":"10.1007/s11235-024-01109-6","DOIUrl":null,"url":null,"abstract":"<p>Wireless sensor networks (WSNs) and Internet of Things (IoT) are essential for numerous applications. WSN nodes often operate on limited battery capacity, so energy efficiency is a significant problem for clustering and routing. In addition to these limitations, one of the primary issues of WSNs is achieving reliability and security of transmitted data in vulnerable environments to prevent malicious node attacks. This work aims to develop a secure and energy-efficient routing protocol for fault data prediction to enhance WSNs network lifespan and data reliability. The proposed technique has three major phases: cluster construction, optimal route selection, and intrusion detection. The adaptive shark smell optimization (ASSO) technique was initially used with three input parameters for CH selection. These parameters are the residual energy, the distance to the BS, and the node density. After clustering, salp swarm optimization (SSO) is used to select the optimum path for data transmission between clusters, resulting in an energy-efficient WSN. Finally, to ensure the security of cluster-based WSNs, an effective intrusion detection system based on a modified Elman recurrent neural network (MERNN) is implemented to detect the presence of intrusions in the network. The experimental results show that it outperforms the competing methods in various performance metrics. The performance results of quality of service (QoS) parameters are expressed as dispersion value (0.8072), packet delivery rate (98%), average delay (160 ms), network lifetime (3200 rounds), and the accuracy of this method is 99.2%. Compared to the SVM, ELM, HMM, and MK-ELM protocols, the proposed protocol increases network lifetime by 77%, 60%, 45.4%, and 14.2%, respectively.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01109-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) and Internet of Things (IoT) are essential for numerous applications. WSN nodes often operate on limited battery capacity, so energy efficiency is a significant problem for clustering and routing. In addition to these limitations, one of the primary issues of WSNs is achieving reliability and security of transmitted data in vulnerable environments to prevent malicious node attacks. This work aims to develop a secure and energy-efficient routing protocol for fault data prediction to enhance WSNs network lifespan and data reliability. The proposed technique has three major phases: cluster construction, optimal route selection, and intrusion detection. The adaptive shark smell optimization (ASSO) technique was initially used with three input parameters for CH selection. These parameters are the residual energy, the distance to the BS, and the node density. After clustering, salp swarm optimization (SSO) is used to select the optimum path for data transmission between clusters, resulting in an energy-efficient WSN. Finally, to ensure the security of cluster-based WSNs, an effective intrusion detection system based on a modified Elman recurrent neural network (MERNN) is implemented to detect the presence of intrusions in the network. The experimental results show that it outperforms the competing methods in various performance metrics. The performance results of quality of service (QoS) parameters are expressed as dispersion value (0.8072), packet delivery rate (98%), average delay (160 ms), network lifetime (3200 rounds), and the accuracy of this method is 99.2%. Compared to the SVM, ELM, HMM, and MK-ELM protocols, the proposed protocol increases network lifetime by 77%, 60%, 45.4%, and 14.2%, respectively.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.