Development of cement nanocomposites reinforced by carbon nanotube dispersion using superplasticizers

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Carbon Letters Pub Date : 2024-03-18 DOI:10.1007/s42823-024-00714-4
Seok Hwan An, Ki Yun Kim, Chul Woo Chung, Jea Uk Lee
{"title":"Development of cement nanocomposites reinforced by carbon nanotube dispersion using superplasticizers","authors":"Seok Hwan An,&nbsp;Ki Yun Kim,&nbsp;Chul Woo Chung,&nbsp;Jea Uk Lee","doi":"10.1007/s42823-024-00714-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the potential application of carbon nanotubes (CNTs) in the construction industry, as CNTs can effectively serve as nano-fillers, bridging the voids and holes in cement structures. However, the limited dispersibility of CNTs in water necessitates the use of dispersing agents for achieving uniform dispersion. In this study, two kinds of cement superplasticizers, polycarboxylate ether (PCE) and sulfonated naphthalene formaldehyde (SNF) were employed as dispersing agents to improve the interfacial affinity between CNTs and cement, and to enhance the strength of the cement nanocomposites. Contact angle experiments revealed that the utilization of PCE and SNF effectively addressed the interface issues between CNTs and cement. As a result, the cement nanocomposite with a CNT to PCE ratio of 1:2 exhibited an approximately 6.6% increase in compressive strength (73.05 MPa), while the CNT:SNF 1:2 cement composite showed a 4.7% increase (71.72 MPa) compared to plain cement (68.52 MPa). In addition, the rate of crack generation in cement nanocomposites with CNTs and dispersing agents was found to be slower than that of plain cement. The resulting cement nanocomposites, characterized by enhanced strength and durability, can be utilized as safer materials in the construction industry.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 5","pages":"1481 - 1494"},"PeriodicalIF":5.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00714-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the potential application of carbon nanotubes (CNTs) in the construction industry, as CNTs can effectively serve as nano-fillers, bridging the voids and holes in cement structures. However, the limited dispersibility of CNTs in water necessitates the use of dispersing agents for achieving uniform dispersion. In this study, two kinds of cement superplasticizers, polycarboxylate ether (PCE) and sulfonated naphthalene formaldehyde (SNF) were employed as dispersing agents to improve the interfacial affinity between CNTs and cement, and to enhance the strength of the cement nanocomposites. Contact angle experiments revealed that the utilization of PCE and SNF effectively addressed the interface issues between CNTs and cement. As a result, the cement nanocomposite with a CNT to PCE ratio of 1:2 exhibited an approximately 6.6% increase in compressive strength (73.05 MPa), while the CNT:SNF 1:2 cement composite showed a 4.7% increase (71.72 MPa) compared to plain cement (68.52 MPa). In addition, the rate of crack generation in cement nanocomposites with CNTs and dispersing agents was found to be slower than that of plain cement. The resulting cement nanocomposites, characterized by enhanced strength and durability, can be utilized as safer materials in the construction industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超塑化剂开发碳纳米管分散体增强的水泥纳米复合材料
本文探讨了碳纳米管(CNTs)在建筑行业的潜在应用,因为碳纳米管可以有效地充当纳米填料,弥合水泥结构中的空隙和孔洞。然而,由于碳纳米管在水中的分散性有限,因此必须使用分散剂才能实现均匀分散。本研究采用聚羧酸醚(PCE)和磺化萘甲醛(SNF)两种水泥超塑化剂作为分散剂,以改善 CNT 与水泥之间的界面亲和力,提高水泥纳米复合材料的强度。接触角实验表明,使用 PCE 和 SNF 能有效解决 CNT 与水泥之间的界面问题。因此,与普通水泥(68.52 兆帕)相比,CNT 与 PCE 比率为 1:2 的水泥纳米复合材料的抗压强度(73.05 兆帕)提高了约 6.6%,而 CNT:SNF 比率为 1:2 的水泥复合材料的抗压强度(71.72 兆帕)提高了 4.7%。此外,还发现含有 CNT 和分散剂的水泥纳米复合材料的裂缝产生速度比普通水泥慢。由此产生的水泥纳米复合材料具有更高的强度和耐久性,可作为更安全的材料用于建筑行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
期刊最新文献
Investigating structural disparities in carbon nanoribbons and nanobelts through spectroscopies Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review Carbon nanomaterials: a promising avenue in colorectal cancer treatment Chemical dissolution of oxide layer on carbon steel SA 106 GR.B-based oxalic acid Optimization of the TiO2 content and location in core–shell tubular carbon nanofibers to improve the photocatalytic activity under visible light irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1