首页 > 最新文献

Carbon Letters最新文献

英文 中文
Deposition of polyaniline nanofibers on activated carbon textile for high-performance pseudocapacitors 在活性炭织物上沉积聚苯胺纳米纤维以制造高性能伪电容器
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1007/s42823-024-00770-w
Gyumin Kim, Hong Jun Park, Sung Tae Jang, Bong Gill Choi

Despite the widespread use of polyaniline as a pseudocapacitor material, the cycling stability and rate capability of polyaniline-based electrodes are of concern because of the structural instability caused by repeated volumetric swelling and shrinking during the charge/discharge process. Herein, nanofiber-structured polyaniline was synthesized onto activated carbon textiles to ensure the long-term stability and high-rate capability of pseudocapacitors. The nanoporous structures of polyaniline nanofibers and activated textile substrate enhanced the ion and electron transfer during charge/discharge cycles. The resulting pseudocapacitor electrodes showed high gravimetric, areal, and volumetric capacitance of 769 F g−1, 2638 mF cm−2, and 845.9 F cm−3, respectively; fast charge/discharge capability of 92.6% capacitance retention at 55 mA cm−2; and good long-term stability of 97.6% capacitance retention over 2000 cycles. Moreover, a symmetric supercapacitor based on polyaniline nanofibers exhibited a high energy of 21.45 Wh cm−3 at a power density of 341.2 mW cm−3 in an aqueous electrolyte.

尽管聚苯胺作为一种伪电容器材料已被广泛使用,但由于在充放电过程中反复的体积膨胀和收缩会导致结构不稳定,因此聚苯胺基电极的循环稳定性和速率能力令人担忧。在此,我们在活性碳纺织品上合成了纳米纤维结构的聚苯胺,以确保伪电容器的长期稳定性和高速率能力。聚苯胺纳米纤维和活性纺织品基底的纳米多孔结构增强了充放电循环过程中的离子和电子转移。所制备的伪电容器电极具有较高的重力电容、面积电容和体积电容,分别为 769 F g-1、2638 mF cm-2 和 845.9 F cm-3;具有快速充放电能力,在 55 mA cm-2 时电容保持率为 92.6%;具有良好的长期稳定性,在 2000 次循环中电容保持率为 97.6%。此外,基于聚苯胺纳米纤维的对称超级电容器在水性电解液中的功率密度为 341.2 mW cm-3 时,能量高达 21.45 Wh cm-3。
{"title":"Deposition of polyaniline nanofibers on activated carbon textile for high-performance pseudocapacitors","authors":"Gyumin Kim, Hong Jun Park, Sung Tae Jang, Bong Gill Choi","doi":"10.1007/s42823-024-00770-w","DOIUrl":"https://doi.org/10.1007/s42823-024-00770-w","url":null,"abstract":"<p>Despite the widespread use of polyaniline as a pseudocapacitor material, the cycling stability and rate capability of polyaniline-based electrodes are of concern because of the structural instability caused by repeated volumetric swelling and shrinking during the charge/discharge process. Herein, nanofiber-structured polyaniline was synthesized onto activated carbon textiles to ensure the long-term stability and high-rate capability of pseudocapacitors. The nanoporous structures of polyaniline nanofibers and activated textile substrate enhanced the ion and electron transfer during charge/discharge cycles. The resulting pseudocapacitor electrodes showed high gravimetric, areal, and volumetric capacitance of 769 F g<sup>−1</sup>, 2638 mF cm<sup>−2</sup>, and 845.9 F cm<sup>−3</sup>, respectively; fast charge/discharge capability of 92.6% capacitance retention at 55 mA cm<sup>−2</sup>; and good long-term stability of 97.6% capacitance retention over 2000 cycles. Moreover, a symmetric supercapacitor based on polyaniline nanofibers exhibited a high energy of 21.45 Wh cm<sup>−3</sup> at a power density of 341.2 mW cm<sup>−3</sup> in an aqueous electrolyte.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the adsorption of volatile organic compounds by biomass-based porous carbon (BPC) and its mechanism 生物质多孔碳(BPC)对挥发性有机化合物的吸附及其机理综述
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1007/s42823-024-00766-6
Haifan Yang, Guannan Liang, Xinyang Sun, Simiao Wu

Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.

挥发性有机化合物(VOC)通常产生于化石燃料的燃烧以及洗涤剂和油漆等化学工业。大气中的挥发性有机化合物会对人体和环境造成不同程度的危害。吸附法因其效率高、操作简单、能耗低等优点,已成为去除大气中挥发性有机化合物最常用的方法之一。生物质多孔碳(BPC)因其低成本和高吸附率被认为是最有前途的吸附材料。本文分析了影响生物质多孔炭吸附大气中 VOCs 的关键特性(如比表面积、孔结构、表面官能团和基本成分)。讨论了通过常见的改性方法,如表面氧化、表面还原、表面负载和其他改性方法来提高 BPC 的吸附能力。此外,还综述了 BPC 对不同类型挥发性有机化合物(包括醛类、酮类、芳香族挥发性有机化合物和卤代烃)的吸附实例。还讨论了具体的吸附机理。最后,就 BPC 吸附 VOCs 提出了一些尚未解决的问题和未来的研究方向。本综述可为今后开发有效的生物质多孔碳 VOCs 吸附技术提供有价值的参考。
{"title":"A review on the adsorption of volatile organic compounds by biomass-based porous carbon (BPC) and its mechanism","authors":"Haifan Yang, Guannan Liang, Xinyang Sun, Simiao Wu","doi":"10.1007/s42823-024-00766-6","DOIUrl":"https://doi.org/10.1007/s42823-024-00766-6","url":null,"abstract":"<p>Volatile organic compounds (VOCs) are commonly produced in the combustion of fossil fuels and in chemical industries such as detergents and paints. VOCs in atmosphere cause different degrees of harm to human bodies and environments. Adsorption has become one of the most concerned methods to remove VOCs in atmosphere due to its high efficiency, simple operation and low energy consumption. Biomass-based porous carbon (BPC) has been considered as the most promising adsorption material because of the low cost and high absorption rate. In this paper, the key characteristic (e.g., specific surface area, pore structure, surface functional groups and basic composition) of BPC affecting the adsorption of VOCs in atmosphere were analyzed. The improvement of adsorption capacity of BPC by common modification methods, such as surface oxidation, surface reduction, surface loading and other modification methods, were discussed. Examples of BPC adsorption on different types of VOCs including aldehydes, ketones, aromatic VOCs, and halogenated hydrocarbons, were also reviewed. The specific adsorption mechanism was discussed. Finally, some unsolved problems and future research directions about BPC for adsorbing VOCs were propounded. This review can serve as a valuable reference for future developing effective biomass-based porous carbon VOCs adsorption technology.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the thermophysical properties of diamond/SiC composites via controlling the diamond graphitization 通过控制金刚石石墨化来调节金刚石/碳化硅复合材料的热物理性质
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s42823-024-00767-5
Xulei Wang, Yikang Li, Yabo Huang, Yalong Zhang, Pei Wang, Li Guan, Xinbo He, Rongjun Liu, Xuanhui Qu, Xiaoge Wu

Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.

通过原位硅碳反应的真空硅气相渗透制备了金刚石/碳化硅复合材料,并通过控制金刚石的石墨化来调节复合材料的热物理性质。研究了金刚石表面状态和真空渗硅温度对金刚石石墨化的影响,观察并表征了复合材料的微观形貌、相组成和性能。结果表明,金刚石预处理可以降低石墨化的概率;当渗透温度大于 1600 ℃ 时,金刚石发生石墨化相变,微观形貌呈现片状。在实验设计的渗透温度范围内,复合材料的热导率、密度和抗弯强度随着渗透温度的升高先增大后减小。当温度在 50 至 400 °C 之间时,不同渗透温度下制备的复合材料的热膨胀系数变化范围为 0.8 至 3.0 ppm/K。
{"title":"Modulating the thermophysical properties of diamond/SiC composites via controlling the diamond graphitization","authors":"Xulei Wang, Yikang Li, Yabo Huang, Yalong Zhang, Pei Wang, Li Guan, Xinbo He, Rongjun Liu, Xuanhui Qu, Xiaoge Wu","doi":"10.1007/s42823-024-00767-5","DOIUrl":"https://doi.org/10.1007/s42823-024-00767-5","url":null,"abstract":"<p>Diamond/SiC composites were prepared by vacuum silica vapor-phase infiltration of in situ silicon–carbon reaction, and the thermophysical properties of the composites were modulated by controlling diamond graphitizing. The effects of diamond surface state and vacuum silicon infiltration temperature on diamond graphitization were investigated, and the micro-morphology, phase composition, and properties of the composites were observed and characterized. The results show that diamond pretreatment can reduce the probability of graphitizing; when the penetration temperature is greater than 1600 °C, the diamond undergoes a graphitizing phase transition and the micro-morphology presents a lamellar shape. The thermal conductivity, density, and flexural strength of the composites increased and then decreased with the increase of penetration temperature in the experimentally designed range of penetration temperature. The variation of thermal expansion coefficients of composites prepared with different penetration temperatures ranged from 0.8 to 3.0 ppm/K when the temperature was between 50 and 400 °C.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of NH3 addition on the preparation of nitrogen-doped carbon nanomaterials by flame synthesis method 添加 NH3 对火焰合成法制备掺氮碳纳米材料的影响
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-27 DOI: 10.1007/s42823-024-00760-y
Hui Zhou, Yuhang Yang, Fen Qiao, Run Hong, Hanfang Zhang, Huaqiang Chu

Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO3)2 as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH3) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (ID/IG) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH3. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.

Graphical Abstract

以 Ni(NO3)2 为催化剂,在层流扩散火焰中制备了掺氮碳纳米材料(N-CNMs)。在碳纳米材料(CNMs)结构中掺入氮元素可显著改变 CNMs 的特性。本研究旨在研究添加氨气(NH3)对乙烯层流火焰中 CNMs 结构演化的影响。拉曼分析表明,添加 NH3 后,N-CNMs 的 D 波段和 G 波段的强度比(ID/IG)先增大后减小。其强度比最大值为 0.99,具有良好的无序度和缺陷密度。通过 X 射线光电子能谱(XPS)分析了氮的结合分布,发现氮的数量与 N-CNMs 的形态之间存在相关性。氮原子主要以吡咯-N、吡啶-N、石墨化-N 和氧化-N 的形式存在,氮原子的掺杂率高达 2.44%。该研究发现,较小的镍纳米粒子是碳纳米管(CNTs)的主要催化剂,其合成遵循 "空心生长机制",而碳纳米纤维(CNFs)则根据 "固体生长机制 "由较大的镍纳米粒子合成。此外,还提出了利用特定粒径的镍催化剂合成竹节状 CNTs 的生长机制。值得注意的是,利用火焰法合成和调制高性能 N-CNMs 是一种简单而高效的方法。
{"title":"Effect of NH3 addition on the preparation of nitrogen-doped carbon nanomaterials by flame synthesis method","authors":"Hui Zhou, Yuhang Yang, Fen Qiao, Run Hong, Hanfang Zhang, Huaqiang Chu","doi":"10.1007/s42823-024-00760-y","DOIUrl":"https://doi.org/10.1007/s42823-024-00760-y","url":null,"abstract":"<p>Nitrogen-doped carbon nanomaterials (N-CNMs) were prepared using Ni(NO<sub>3</sub>)<sub>2</sub> as a catalyst in the laminar diffusion flame. Doping the structure of carbon nanomaterials (CNMs) with nitrogen can significantly change the characteristics of CNMs. The purpose of this research is to study the effect of adding ammonia (NH<sub>3</sub>) on the evolution of CNMs structure in the laminar flame of ethylene. Raman analysis shows that the intensity ratio (I<sub>D</sub>/I<sub>G</sub>) of the D-band and G-band of N-CNMs increases and then decreases after the addition of NH<sub>3</sub>. The intensity ratio is a maximum of 0.99, which has a good degree of disorder and defect density. The binding distribution of nitrogen was analyzed by X-ray photoelectron spectroscopy (XPS), and a correlation was found between the amount of nitrogen and the morphology of N-CNMs. Nitrogen atoms predominantly present in the forms of pyrrolic-N, pyridinic-N, graphitized-N and oxidized-N, with a doping ratio of nitrogen atoms reaching up to 2.44 at.%. This study found that smaller nickel (Ni) nanoparticles were the main catalysts for carbon nanotubes (CNTs), and their synthesis followed the ‘hollow growth mechanism’ and carbon nanofibers (CNFs) were synthesized from larger Ni nanoparticles according to the ‘solid growth mechanism’. Furthermore, a growth mechanism for the synthesis of bamboo-like CNTs using a specific particle size of the Ni catalyst is proposed. It is noteworthy that the synthesis and modulation of high-performance N-CNMs by flame method represents a simple and efficient approach.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor 一种用作无铂 DSSC 供电超级电容器-光电超级电容器集成电极的双功能混合季纳米复合材料
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-23 DOI: 10.1007/s42823-024-00762-w
Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Dinesh Ayyar, Madhavan Joseph, Victor Antony Raj Moses, Malarkodi Ammavasi, Manikandan Ayyar

Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm−2, 17.325 μW h cm−2 and 0.162 mW cm−2, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.

基于石墨烯的太阳能电池和超级电容器与光电超级电容器的集成是一项开创性的进步。这些设备利用石墨烯的特殊性能,如高导电性和大表面积,提高了太阳能转换和能量存储能力。将这些技术集成到光电超级电容器中,可以创造出一种能够利用太阳能并有效储存太阳能的多功能装置。这种创新方法有望成为可持续的多功能能源解决方案,标志着向开发高效、紧凑型储能系统迈出了重要一步。这种集成通过储能提供持续可靠的电力供应,解决了太阳能发电的间歇性问题。超级电容器就是这样一种具有高功率密度和出色比电容的能源装置,它与染料敏化太阳能电池(DSSC)集成在一起,构成了一个单一的光电超级电容器系统。研究人员合成了一种新型的 NiO/CuO/Co3O4/rGO 电极材料,这种材料可用作 DSSC 的无铂对电极和超级电容器的工作电极或存储电极,之后又被用作光upercapacitor 的中间电极和存储电极。该集成光超级电容器装置的光电压为 0.81 V,等面积电容、能量和功率密度分别为 190.12 mF cm-2、17.325 μW h cm-2 和 0.162 mW cm-2。该装置的自放电时间为 385 秒,整体转换效率为 2.17%,是一种自充电能源装置。
{"title":"A bifunctional nanocomposite of hybrid quaternary nanocomposite as electrodes for an integrated Pt-free DSSC powered supercapacitor–photosupercapacitor","authors":"Joselene Suzan Jennifer Patrick, Niranjana Subrayapillai Ramakrishna, Muthupandi Sankar, Dinesh Ayyar, Madhavan Joseph, Victor Antony Raj Moses, Malarkodi Ammavasi, Manikandan Ayyar","doi":"10.1007/s42823-024-00762-w","DOIUrl":"https://doi.org/10.1007/s42823-024-00762-w","url":null,"abstract":"<p>Graphene-based solar cells and supercapacitors integrated into photosupercapacitors represent a pioneering advancement. These devices leverage the exceptional properties of graphene, such as high conductivity and large surface area, to enhance both solar energy conversion and energy storage. The integration of these technologies into photosupercapacitors creates a multifunctional device capable of harnessing solar energy and storing it efficiently. This innovative approach holds promise for sustainable and versatile energy solutions, marking a significant step towards developing efficient and compact energy storage systems. This integration addresses the intermittent nature of solar power generation by providing a continuous and reliable power supply through energy storage. Supercapacitors are one such energy device with a high-power density and excellent specific capacitance which is integrated will a dye-sensitized solar cell (DSSC) comprising a single system of photosupercapacitor. A novel electrode material of NiO/CuO/Co<sub>3</sub>O<sub>4</sub>/rGO was synthesized which serves as the Pt-free counter electrode of DSSC and working or storage electrode of supercapacitor later was used as the intermediate electrode and storage electrode of a photosupercapacitor. The integrated photosupercapacitor device had a photovoltage of 0.81 V with areal-specific capacitance, energy and power density of 190.12 mF cm<sup>−2</sup>, 17.325 μW h cm<sup>−2</sup> and 0.162 mW cm<sup>−2</sup>, respectively. The device self-discharged in 385 s with an overall conversion efficiency of 2.17%, resulting in a self-charged energy device.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+ 用于灵敏和选择性检测 Cu2+ 和 Fe3+ 的煤衍生荧光碳量子点
IF 4.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-18 DOI: 10.1007/s42823-024-00763-9
Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao

A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe3+ and Cu2+ in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe3+ and Cu2+ metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.

本研究开发了一种简单有效的方法来制备用于检测水溶液中 Fe3+ 和 Cu2+ 的荧光碳量子点(CQDs)。该方法以无烟煤为前驱体,合成了直径约为 2-5 nm 的水溶性碳量子点。此外,所制备的 CQDs 对 Fe3+ 和 Cu2+ 金属阳离子具有灵敏的检测特性,检测限分别为 18.4 nM 和 15.6 nM,这表明煤制 CQDs 传感器在重金属识别和环境监测方面具有优越性。
{"title":"Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+","authors":"Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao","doi":"10.1007/s42823-024-00763-9","DOIUrl":"https://doi.org/10.1007/s42823-024-00763-9","url":null,"abstract":"<p>A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe<sup>3+</sup> and Cu<sup>2+</sup> in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe<sup>3+</sup> and Cu<sup>2+</sup> metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au-loaded alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation 用于光催化固氮的金负载碱金属改性结晶氮化碳
IF 4.5 3区 材料科学 Q2 Chemistry Pub Date : 2024-06-04 DOI: 10.1007/s42823-024-00755-9
Mimi Luo, Baibing Wang, Jiahui Shao, Yupeng Yan, Guanjie Jiang, Qin Zhang, Yang Li

Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g−1 h−1, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.

结晶氮化庚嗪(HCN)是光催化合成氨的理想光催化剂。然而,其对可见光的响应有限,阻碍了其进一步发展。作为一种贵金属,金纳米粒子(NPs)可以通过表面等离子共振(SPR)效应增强光催化剂的光吸收能力。因此,研究人员制备了一系列负载金纳米粒子的结晶氮化碳材料(AH),用于光催化固氮。结果表明,由于引入了 Au NPs,AH 显著提高了光吸收能力,降低了光生载流子的重组率。最佳的 2AH(负载 2 wt% 金)样品在合成氨生产中表现出最佳的光催化性能,产氨量为 70.3 μmol g-1 h-1,优于 HCN。这可归因于金纳米粒子和 HCN 结构中碱金属的 SPR 效应。这些发现为研究贵金属增强的固氮光催化活性提供了理论基础,并为高效光催化剂的发展提供了新的见解。
{"title":"Au-loaded alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation","authors":"Mimi Luo, Baibing Wang, Jiahui Shao, Yupeng Yan, Guanjie Jiang, Qin Zhang, Yang Li","doi":"10.1007/s42823-024-00755-9","DOIUrl":"https://doi.org/10.1007/s42823-024-00755-9","url":null,"abstract":"<p>Crystalline heptazine carbon nitride (HCN) is an ideal photocatalyst for photocatalytic ammonia synthesis. However, the limited response to visible light has hindered its further development. As a noble metal, Au nanoparticles (NPs) can enhance the light absorption capability of photocatalysts by the surface plasmon resonance (SPR) effect. Therefore, a series of Au NPs-loaded crystalline carbon nitride materials (AH) were prepared for photocatalytic nitrogen fixation. The results showed that the AH displayed significantly improved light absorption and decreased recombination rate of photo-generated carriers owing to the introduction of Au NPs. The optimal 2AH (loaded with 2 wt% Au) sample demonstrated the best photocatalytic performance for ammonia production with a yield of 70.3 μmol g<sup>−1</sup> h<sup>−1</sup>, which outperformed that of HCN. This can be attributed to the SPR effect of Au NPs and alkali metal of HCN structure. These findings provide a theoretical basis for studying noble metal-enhanced photocatalytic activity for nitrogen fixation and offer new insights into advances in efficient photocatalysts.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical surface modification of carbon: a highly active metal-free electrocatalyst for hydrogen evolution reaction 碳的电化学表面改性:氢进化反应的高活性无金属电催化剂
IF 4.5 3区 材料科学 Q2 Chemistry Pub Date : 2024-06-04 DOI: 10.1007/s42823-024-00752-y
Bhavani Kalaidhasan, Lavanya Murugan, C. Jeyabharathi, R. Malini, S. Vengatesan, S. Vasudevan, S. Ravichandran

In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.

近年来,为氢气进化反应(HER)寻找高效、稳定、低成本的铂金替代物的工作促使了新型催化剂的开发。在本研究中,我们通过超声和阳极氧化工艺在东丽碳基底的石墨层中制造缺陷位点,研究了东丽碳基底的电催化氢催化活性。通过不同时间段的超声处理、阳极氧化以及先超声处理后阳极氧化过程对其表面进行改性,制备了一系列具有活性位点的东丽碳衬底。阳极氧化过程大大提高了表面润湿性,从而使反应位点的质子通量大幅增加。因此,经过 3 分钟超声处理和 10 分钟阳极氧化处理的东丽碳(TC-3U-10A)的 HER 过电位明显降低,其塔菲尔斜率值明显降低,为 60 mV/dec。此外,由于基底的润湿性增强,阳极氧化表面对 HER 的反应活性显著提高,特别是在硫酸浓度较高的情况下。本研究中记录的最低塔菲尔斜率值为 60 mV/dec,这表明富缺陷碳材料的催化效率得到了大幅提高。这些发现为推动碳材料的电催化应用带来了希望,并可能对各种技术和工业过程产生重大影响。
{"title":"Electrochemical surface modification of carbon: a highly active metal-free electrocatalyst for hydrogen evolution reaction","authors":"Bhavani Kalaidhasan, Lavanya Murugan, C. Jeyabharathi, R. Malini, S. Vengatesan, S. Vasudevan, S. Ravichandran","doi":"10.1007/s42823-024-00752-y","DOIUrl":"https://doi.org/10.1007/s42823-024-00752-y","url":null,"abstract":"<p>In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of heteroatoms and temperature ramping rate on pyrolysis of coal tar pitch for high value of β-resin 杂原子和升温速率对煤焦油沥青热解产生高β-树脂值的影响
IF 4.5 3区 材料科学 Q2 Chemistry Pub Date : 2024-06-03 DOI: 10.1007/s42823-024-00753-x
Seungjoo Park, Seon Ho Lee, Song Mi Lee, Gyusang Lee, Doo-Hwan Jung

Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.

煤沥青是一种原材料,可以通过热处理制成各种碳材料,如活性炭、碳纤维和人造石墨。特别是在制造碳复合材料时,它是一种重要的粘合剂和浸渍沥青原料。为了提高碳复合材料的物理性能,β-树脂的含量是一个重要因素。虽然 β 树脂起着粘合剂的作用,但它也相当于固定碳,因此它能决定碳化后的物理性质。本研究比较了煤沥青不同升温速率下的物理性质,通过 Py-GC/MS 分析发现,中间物质是由氧和氮等杂原子生成的。MALDI-TOF/MS 分析表明,这些中间物质与 β 树脂的分子量区域重叠。因此,β 树脂的含量依次为当使用 430-5 作为粘合剂时,密度最高,达到 1.75 克/立方厘米。然而,即使在高于 900 °C 的温度下,这些中间材料也会发生热分解。因此,碳化后,430-5 的密度为 1.60 g/cm3,与 430-2(1.72 → 1.63 g/cm3)和 430-10(1.73 → 1.61 g/cm3)的密度相近或更低。从这些结果可以看出,如果杂原子含量分布适当,加热速度控制得当,即使在碳化后也能保持较高的密度,同时确保较高的β-树脂含量。
{"title":"The effect of heteroatoms and temperature ramping rate on pyrolysis of coal tar pitch for high value of β-resin","authors":"Seungjoo Park, Seon Ho Lee, Song Mi Lee, Gyusang Lee, Doo-Hwan Jung","doi":"10.1007/s42823-024-00753-x","DOIUrl":"https://doi.org/10.1007/s42823-024-00753-x","url":null,"abstract":"<p>Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm<sup>3</sup>. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm<sup>3</sup>, which was similar or lower than that of 430–2 (1.72 → 1.63 g/cm<sup>3</sup>) and 430–10 (1.73 → 1.61 g/cm<sup>3</sup>). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ester-based electrolytes for graphite solid electrolyte interface layer stabilization and low-temperature performance in lithium-ion batteries 用于锂离子电池中石墨固态电解质界面层稳定和低温性能的酯基电解质
IF 4.5 3区 材料科学 Q2 Chemistry Pub Date : 2024-05-30 DOI: 10.1007/s42823-024-00749-7
Chan-Gyo Kim, Suk Jekal, Jiwon Kim, Ha-Yeong Kim, Gyu-Sik Park, Yoon-Ho Ra, Jungchul Noh, Chang-Min Yoon

In this study, ester co-solvents and fluoroethylene carbonate (FEC) were used as low-temperature electrolyte additives to improve the formation of the solid electrolyte interface (SEI) on graphite anodes in lithium-ion batteries (LIBs). Four ester co-solvents, namely methyl acetate (MA), ethyl acetate, methyl propionate, and ethyl propionate, were mixed with 1.0 M LiPF6 ethylene carbonate:diethyl carbonate:dimethyl carbonate (1:1:1 by vol%) as the base electrolyte (BE). Different concentrations were used to compare the electrochemical performance of the LiCoO2/graphite full cells. Among various ester co-solvents, the cell employing BE mixed with 30 vol% MA (BE/MA30) achieved the highest discharge capacity at − 20 °C. In contrast, mixing esters with low-molecular-weight degraded the cell performance owing to the unstable SEI formation on the graphite anodes. Therefore, FEC was added to BE/MA30 (BE/MA30-FEC5) to form a stable SEI layer on the graphite anode surface. The LiCoO2/graphite cell using BE/MA30-FEC5 exhibited an excellent capacity of 127.3 mAh g−1 at − 20 °C with a capacity retention of 80.6% after 100 cycles owing to the synergistic effect of MA and formation of a stable and uniform inorganic SEI layer by FEC decomposition reaction. The low-temperature electrolyte designed in this study may provide new guidelines for resolving low-temperature issues related to LIBs, graphite anodes, and SEI layers.

Graphical abstract

本研究使用酯类助溶剂和氟碳酸乙烯酯(FEC)作为低温电解质添加剂,以改善锂离子电池(LIB)中石墨阳极上固体电解质界面(SEI)的形成。将四种酯类助溶剂,即醋酸甲酯(MA)、醋酸乙酯、丙酸甲酯和丙酸乙酯,与 1.0 M LiPF6 碳酸乙烯酯:碳酸二乙酯:碳酸二甲酯(体积比为 1:1:1)混合,作为基础电解质(BE)。采用不同的浓度来比较钴酸锂/石墨全电池的电化学性能。在各种酯类助溶剂中,使用混合了 30 Vol% MA 的 BE(BE/MA30)的电池在零下 20 °C 时的放电容量最高。相反,混合低分子量的酯会降低电池性能,因为石墨阳极上会形成不稳定的 SEI。因此,在 BE/MA30 中添加了 FEC(BE/MA30-FEC5),以在石墨阳极表面形成稳定的 SEI 层。使用 BE/MA30-FEC5 的钴酸锂/石墨电池在零下 20 °C 时显示出 127.3 mAh g-1 的出色容量,循环 100 次后容量保持率为 80.6%,这归功于 MA 的协同效应以及 FEC 分解反应形成的稳定、均匀的无机 SEI 层。本研究设计的低温电解液可为解决与 LIB、石墨阳极和 SEI 层有关的低温问题提供新的指导。
{"title":"Ester-based electrolytes for graphite solid electrolyte interface layer stabilization and low-temperature performance in lithium-ion batteries","authors":"Chan-Gyo Kim, Suk Jekal, Jiwon Kim, Ha-Yeong Kim, Gyu-Sik Park, Yoon-Ho Ra, Jungchul Noh, Chang-Min Yoon","doi":"10.1007/s42823-024-00749-7","DOIUrl":"https://doi.org/10.1007/s42823-024-00749-7","url":null,"abstract":"<p>In this study, ester co-solvents and fluoroethylene carbonate (FEC) were used as low-temperature electrolyte additives to improve the formation of the solid electrolyte interface (SEI) on graphite anodes in lithium-ion batteries (LIBs). Four ester co-solvents, namely methyl acetate (MA), ethyl acetate, methyl propionate, and ethyl propionate, were mixed with 1.0 M LiPF<sub>6</sub> ethylene carbonate:diethyl carbonate:dimethyl carbonate (1:1:1 by vol%) as the base electrolyte (BE). Different concentrations were used to compare the electrochemical performance of the LiCoO<sub>2</sub>/graphite full cells. Among various ester co-solvents, the cell employing BE mixed with 30 vol% MA (BE/MA30) achieved the highest discharge capacity at − 20 °C. In contrast, mixing esters with low-molecular-weight degraded the cell performance owing to the unstable SEI formation on the graphite anodes. Therefore, FEC was added to BE/MA30 (BE/MA30-FEC5) to form a stable SEI layer on the graphite anode surface. The LiCoO<sub>2</sub>/graphite cell using BE/MA30-FEC5 exhibited an excellent capacity of 127.3 mAh g<sup>−1</sup> at − 20 °C with a capacity retention of 80.6% after 100 cycles owing to the synergistic effect of MA and formation of a stable and uniform inorganic SEI layer by FEC decomposition reaction. The low-temperature electrolyte designed in this study may provide new guidelines for resolving low-temperature issues related to LIBs, graphite anodes, and SEI layers.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Carbon Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1