Modeling Ionospheric TEC Using Gradient Boosting Based and Stacking Machine Learning Techniques

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-03-16 DOI:10.1029/2023sw003821
Ayanew Nigusie, Ambelu Tebabal, Roman Galas
{"title":"Modeling Ionospheric TEC Using Gradient Boosting Based and Stacking Machine Learning Techniques","authors":"Ayanew Nigusie, Ambelu Tebabal, Roman Galas","doi":"10.1029/2023sw003821","DOIUrl":null,"url":null,"abstract":"Accurately predicting and modeling the ionospheric total electron content (TEC) can greatly improve the accuracy of satellite navigation and positioning and help to correct ionospheric delay. This study assesses the effectiveness of four different machine learning (ML) models in predicting hourly vertical TEC (VTEC) data for a single-station study over Ethiopia. The models employed include gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) algorithms, and a stacked combination of these algorithms with a linear regression algorithm. The models relied on input variables that represent solar activity, geomagnetic activity, season, time of the day, interplanetary magnetic field, and solar wind. The models were trained using the VTEC data from January 2011 to December 2018, excluding the testing data. The testing data comprised the data for the year 2015 and the initial 6 months of 2017. The RandomizedSearchCV algorithm was used to determine the optimal hyperparameters of the models. The predicted VTEC values of the four ML models were strongly correlated with the GPS VTEC, with a correlation coefficient of ∼0.96, which is significantly higher than the corresponding value of the International Reference Ionosphere (IRI 2020) model, which is 0.87. Comparing the GPS VTEC values with the predicted VTEC values based on diurnal and seasonal characteristics showed that the predictions of the developed models were generally in good agreement and outperformed the IRI 2020 model. Overall, the ML models used in this study demonstrated promising potential for accurate single-station VTEC prediction over Ethiopia.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003821","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting and modeling the ionospheric total electron content (TEC) can greatly improve the accuracy of satellite navigation and positioning and help to correct ionospheric delay. This study assesses the effectiveness of four different machine learning (ML) models in predicting hourly vertical TEC (VTEC) data for a single-station study over Ethiopia. The models employed include gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) algorithms, and a stacked combination of these algorithms with a linear regression algorithm. The models relied on input variables that represent solar activity, geomagnetic activity, season, time of the day, interplanetary magnetic field, and solar wind. The models were trained using the VTEC data from January 2011 to December 2018, excluding the testing data. The testing data comprised the data for the year 2015 and the initial 6 months of 2017. The RandomizedSearchCV algorithm was used to determine the optimal hyperparameters of the models. The predicted VTEC values of the four ML models were strongly correlated with the GPS VTEC, with a correlation coefficient of ∼0.96, which is significantly higher than the corresponding value of the International Reference Ionosphere (IRI 2020) model, which is 0.87. Comparing the GPS VTEC values with the predicted VTEC values based on diurnal and seasonal characteristics showed that the predictions of the developed models were generally in good agreement and outperformed the IRI 2020 model. Overall, the ML models used in this study demonstrated promising potential for accurate single-station VTEC prediction over Ethiopia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于梯度提升和堆叠的机器学习技术为电离层 TEC 建模
电离层电子总含量(TEC)的准确预测和建模可大大提高卫星导航和定位的准确性,并有助于校正电离层延迟。本研究评估了埃塞俄比亚上空单站研究中四种不同机器学习(ML)模型在预测每小时垂直 TEC(VTEC)数据方面的有效性。采用的模型包括梯度提升机(GBM)、极梯度提升机(XGBoost)、轻梯度提升机(LightGBM)算法,以及这些算法与线性回归算法的叠加组合。这些模型依赖于代表太阳活动、地磁活动、季节、一天中的时间、行星际磁场和太阳风的输入变量。使用 2011 年 1 月至 2018 年 12 月的 VTEC 数据(不包括测试数据)对模型进行了训练。测试数据包括 2015 年和 2017 年最初 6 个月的数据。使用 RandomizedSearchCV 算法确定模型的最优超参数。四个 ML 模型的预测 VTEC 值与 GPS VTEC 值密切相关,相关系数为 ∼0.96,明显高于国际参考电离层(IRI 2020)模型的相应值 0.87。将全球定位系统的 VTEC 值与根据昼夜和季节特征预测的 VTEC 值进行比较,结果表明,所开发模型的预测值与 IRI 2020 模型的预测值基本吻合,并且优于 IRI 2020 模型。总体而言,本研究中使用的 ML 模型在埃塞俄比亚上空单站 VTEC 精确预测方面表现出了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1