{"title":"An efficient algorithm with fast convergence rate for sparse graph signal reconstruction","authors":"","doi":"10.1186/s13634-024-01133-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we consider the graph signals are sparse in the graph Fourier domain and propose an iterative threshold compressed sensing reconstruction (ITCSR) algorithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed ITCSR algorithm derives from the well-known compressed sensing by considering a threshold for sparsity-promoting reconstruction of the underlying graph signals. The proposed ITCSR algorithm enhances the performance of sparse graph signal reconstruction by introducing a threshold function to determine a suitable threshold. Furthermore, we demonstrate that the suitable parameters for the threshold can be automatically determined by leveraging the sparrow search algorithm. Moreover, we analytically prove the convergence property of the proposed ITCSR algorithm. In the experimental, numerical tests with synthetic as well as 3D point cloud data demonstrate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01133-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the graph signals are sparse in the graph Fourier domain and propose an iterative threshold compressed sensing reconstruction (ITCSR) algorithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed ITCSR algorithm derives from the well-known compressed sensing by considering a threshold for sparsity-promoting reconstruction of the underlying graph signals. The proposed ITCSR algorithm enhances the performance of sparse graph signal reconstruction by introducing a threshold function to determine a suitable threshold. Furthermore, we demonstrate that the suitable parameters for the threshold can be automatically determined by leveraging the sparrow search algorithm. Moreover, we analytically prove the convergence property of the proposed ITCSR algorithm. In the experimental, numerical tests with synthetic as well as 3D point cloud data demonstrate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.