{"title":"Machining accuracy reliability optimization of three-axis CNC machine tools using doubly-weighted vector projection response surface method","authors":"Zhiming Wang, Wenbin Lu","doi":"10.1007/s00170-024-13426-w","DOIUrl":null,"url":null,"abstract":"<p>The reasonable allocation of geometric errors of machine tools can improve their machining accuracy reliability (MAR). However, due to the complexity and high nonlinearity of limit state function (LSF) of MAR, the fitting accuracy is usually low when the traditional method is used to approximate LSF. To solve this problem, a doubly-weighted vector projection response surface (DWVPRS) method, which considers not only the approximation results of test sample points (TSPs) to LSF but the distances between TSPs and the most probable failure point (MPFP), is proposed. Using the reliability sensitivity analysis method, the key geometric errors were identified and optimized. Finally, taking a large gantry guideway grinding machine as an example to verifies the effectiveness and correctness of the DWVPRS method proposed in this paper, the results show that compared with the traditional methods, the DWVPRS method has the highest fitting accuracy to approximate LSF at the MPFP, and after the optimization of geometric accuracy, both the minimum and average reliability values of the grinding machine meet the design requirements.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13426-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The reasonable allocation of geometric errors of machine tools can improve their machining accuracy reliability (MAR). However, due to the complexity and high nonlinearity of limit state function (LSF) of MAR, the fitting accuracy is usually low when the traditional method is used to approximate LSF. To solve this problem, a doubly-weighted vector projection response surface (DWVPRS) method, which considers not only the approximation results of test sample points (TSPs) to LSF but the distances between TSPs and the most probable failure point (MPFP), is proposed. Using the reliability sensitivity analysis method, the key geometric errors were identified and optimized. Finally, taking a large gantry guideway grinding machine as an example to verifies the effectiveness and correctness of the DWVPRS method proposed in this paper, the results show that compared with the traditional methods, the DWVPRS method has the highest fitting accuracy to approximate LSF at the MPFP, and after the optimization of geometric accuracy, both the minimum and average reliability values of the grinding machine meet the design requirements.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.