{"title":"Analysis of Hotspots in and outside School Zones: A Case Study of Seoul","authors":"Uibeom Chun, Joonbeom Lim, Hyungkyu Kim","doi":"10.1155/2024/6613603","DOIUrl":null,"url":null,"abstract":"<p>With growing social concern on pedestrian accidents involving children, the Korean government announced a plan to decrease the number of child deaths due to traffic accidents by 2026. Therefore, policymakers should consider various measures for school zones because a safe school walkway is essential for preventing traffic accidents around schools. Some parts of the roads within a radius of 300 m from elementary school and kindergarten entrances are designated as school zones. Certain roads experience frequent accidents within the school zone, while others experience frequent accidents outside the school zone. Hence, this study aimed to provide school zone types in Seoul by noting different occurrence accidents within and outside each school zone and suggest proper countermeasure by type. After selecting a 300 m radius analysis unit from the school zones, a distinction was made between the school zones and outside for each analysis unit. After verifying the spatial autocorrelation in each unit, hotspot analysis identified four types based on the presence or absence of hotspots in each unit. Types were defined as follows: Type A—no hotspots in school zones or outside the school zones; Type B—hotspots only outside the school zones; Type C—hotspots only the school zones; and Type D—hotspots both in school zones and outside the school zones. Subsequently, a case study was conducted to validate the types. For Types B and C, the results revealed differences in the installation of traffic safety facilities and the environment between within and outside the school zones. Therefore, Type B requires improving safety outside the school zones by expanding school zones to match the safety level within. For Type C, it implies the need to strengthen safety measures in the school zones. Lastly, for Type D, improvement projects for a safe walking environment should be implemented in primarily by conducting separate inspections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6613603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
With growing social concern on pedestrian accidents involving children, the Korean government announced a plan to decrease the number of child deaths due to traffic accidents by 2026. Therefore, policymakers should consider various measures for school zones because a safe school walkway is essential for preventing traffic accidents around schools. Some parts of the roads within a radius of 300 m from elementary school and kindergarten entrances are designated as school zones. Certain roads experience frequent accidents within the school zone, while others experience frequent accidents outside the school zone. Hence, this study aimed to provide school zone types in Seoul by noting different occurrence accidents within and outside each school zone and suggest proper countermeasure by type. After selecting a 300 m radius analysis unit from the school zones, a distinction was made between the school zones and outside for each analysis unit. After verifying the spatial autocorrelation in each unit, hotspot analysis identified four types based on the presence or absence of hotspots in each unit. Types were defined as follows: Type A—no hotspots in school zones or outside the school zones; Type B—hotspots only outside the school zones; Type C—hotspots only the school zones; and Type D—hotspots both in school zones and outside the school zones. Subsequently, a case study was conducted to validate the types. For Types B and C, the results revealed differences in the installation of traffic safety facilities and the environment between within and outside the school zones. Therefore, Type B requires improving safety outside the school zones by expanding school zones to match the safety level within. For Type C, it implies the need to strengthen safety measures in the school zones. Lastly, for Type D, improvement projects for a safe walking environment should be implemented in primarily by conducting separate inspections.