Structural modulation of bilayer graphene under an external electric field and carrier doping

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, APPLIED Applied Physics Express Pub Date : 2024-03-15 DOI:10.35848/1882-0786/ad2ecc
Nadia Sultana, Yanlin Gao, Mina Maruyama and Susumu Okada
{"title":"Structural modulation of bilayer graphene under an external electric field and carrier doping","authors":"Nadia Sultana, Yanlin Gao, Mina Maruyama and Susumu Okada","doi":"10.35848/1882-0786/ad2ecc","DOIUrl":null,"url":null,"abstract":"Density functional theory was used to investigate the geometric structure of bilayer graphene under an external electric field with carrier doping. Our calculations revealed the crucial impact of external electric fields and the hole injection on determining the geometric structure of bilayer graphene. The bond length of graphene monotonically increased when increasing the hole doping concentration, while it remained insensitive to electron doping. Additionally, there accumulated carriers predominantly distributed in the outermost layer located just below the gate electrode. These results enabled the construction of moiré superlattices in the bilayer graphene, possessing different moiré periodicity depending on the carrier concentration.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"5082 5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad2ecc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Density functional theory was used to investigate the geometric structure of bilayer graphene under an external electric field with carrier doping. Our calculations revealed the crucial impact of external electric fields and the hole injection on determining the geometric structure of bilayer graphene. The bond length of graphene monotonically increased when increasing the hole doping concentration, while it remained insensitive to electron doping. Additionally, there accumulated carriers predominantly distributed in the outermost layer located just below the gate electrode. These results enabled the construction of moiré superlattices in the bilayer graphene, possessing different moiré periodicity depending on the carrier concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外电场和载流子掺杂下双层石墨烯的结构调制
我们利用密度泛函理论研究了外电场和载流子掺杂作用下双层石墨烯的几何结构。我们的计算揭示了外电场和空穴注入对决定双层石墨烯几何结构的关键影响。当增加空穴掺杂浓度时,石墨烯的键长单调增加,而它对电子掺杂仍然不敏感。此外,积累的载流子主要分布在栅极下方的最外层。这些结果使我们能够在双层石墨烯中构建摩尔纹超晶格,并根据载流子浓度的不同而具有不同的摩尔纹周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Express
Applied Physics Express 物理-物理:应用
CiteScore
4.80
自引率
8.70%
发文量
310
审稿时长
1.2 months
期刊介绍: Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
期刊最新文献
Sensing and frequency selecting with toroidal resonance in metasurface A unified global model accompanied with a voltage and current sensor for low-pressure capacitively coupled RF discharge Degradation mechanism of degenerate n-GaN ohmic contact induced by ion beam etching damage Thermoelectric measurements of nanomaterials by nanodiamond quantum thermometry Physical reservoir computing with visible-light signals using dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1