CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Privacy and Security Pub Date : 2024-03-15 DOI:10.1145/3652594
Markus Bayer, Philipp Kuehn, Ramin Shanehsaz, Christian Reuter
{"title":"CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain","authors":"Markus Bayer, Philipp Kuehn, Ramin Shanehsaz, Christian Reuter","doi":"10.1145/3652594","DOIUrl":null,"url":null,"abstract":"<p>The field of cybersecurity is evolving fast. Security professionals are in need of intelligence on past, current and - ideally - on upcoming threats, because attacks are becoming more advanced and are increasingly targeting larger and more complex systems. Since the processing and analysis of such large amounts of information cannot be addressed manually, cybersecurity experts rely on machine learning techniques. In the textual domain, pre-trained language models like BERT have proven to be helpful as they provide a good baseline for further fine-tuning. However, due to the domain-knowledge and the many technical terms in cybersecurity, general language models might miss the gist of textual information. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain which can serve as a basic building block for cybersecurity systems. The model is compared on 15 tasks: Domain-dependent extrinsic tasks for measuring the performance on specific problems, intrinsic tasks for measuring the performance of the internal representations of the model as well as general tasks from the SuperGLUE benchmark. The results of the intrinsic tasks show that our model improves the internal representation space of domain words compared to the other models. The extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model performs best in cybersecurity scenarios. In addition, we pay special attention to the choice of hyperparameters against catastrophic forgetting, as pre-trained models tend to forget the original knowledge during further training.</p>","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652594","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The field of cybersecurity is evolving fast. Security professionals are in need of intelligence on past, current and - ideally - on upcoming threats, because attacks are becoming more advanced and are increasingly targeting larger and more complex systems. Since the processing and analysis of such large amounts of information cannot be addressed manually, cybersecurity experts rely on machine learning techniques. In the textual domain, pre-trained language models like BERT have proven to be helpful as they provide a good baseline for further fine-tuning. However, due to the domain-knowledge and the many technical terms in cybersecurity, general language models might miss the gist of textual information. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain which can serve as a basic building block for cybersecurity systems. The model is compared on 15 tasks: Domain-dependent extrinsic tasks for measuring the performance on specific problems, intrinsic tasks for measuring the performance of the internal representations of the model as well as general tasks from the SuperGLUE benchmark. The results of the intrinsic tasks show that our model improves the internal representation space of domain words compared to the other models. The extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model performs best in cybersecurity scenarios. In addition, we pay special attention to the choice of hyperparameters against catastrophic forgetting, as pre-trained models tend to forget the original knowledge during further training.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CySecBERT:网络安全领域的领域适应语言模型
网络安全领域发展迅速。安全专业人员需要获得有关过去、当前和未来威胁的情报,因为攻击正变得越来越先进,而且越来越多地针对更大、更复杂的系统。由于人工无法处理和分析如此大量的信息,网络安全专家只能依靠机器学习技术。在文本领域,像 BERT 这样的预训练语言模型已被证明很有帮助,因为它们为进一步微调提供了良好的基准。但是,由于网络安全领域的知识和许多专业术语,一般的语言模型可能会忽略文本信息的要点。为此,我们创建了一个高质量的数据集,并提出了一个专门针对网络安全领域的语言模型,该模型可作为网络安全系统的基本构件。我们在 15 项任务中对该模型进行了比较:与领域相关的外在任务用于测量特定问题的性能,内在任务用于测量模型内部表征的性能,以及来自 SuperGLUE 基准的一般任务。内在任务的结果表明,与其他模型相比,我们的模型改进了领域词的内部表示空间。由序列标记和分类组成的依赖于领域的外部任务表明,该模型在网络安全场景中表现最佳。此外,我们还特别注意超参数的选择,以防止灾难性遗忘,因为预训练模型在进一步训练过程中往往会遗忘原有知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Privacy and Security
ACM Transactions on Privacy and Security Computer Science-General Computer Science
CiteScore
5.20
自引率
0.00%
发文量
52
期刊介绍: ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.
期刊最新文献
ZPredict: ML-Based IPID Side-channel Measurements ZTA-IoT: A Novel Architecture for Zero-Trust in IoT Systems and an Ensuing Usage Control Model Security Analysis of the Consumer Remote SIM Provisioning Protocol X-squatter: AI Multilingual Generation of Cross-Language Sound-squatting Toward Robust ASR System against Audio Adversarial Examples using Agitated Logit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1