Empirical Asset Pricing with Many Test Assets

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE Journal of Financial Econometrics Pub Date : 2024-03-15 DOI:10.1093/jjfinec/nbae002
Rasmus Lönn, Peter C Schotman
{"title":"Empirical Asset Pricing with Many Test Assets","authors":"Rasmus Lönn, Peter C Schotman","doi":"10.1093/jjfinec/nbae002","DOIUrl":null,"url":null,"abstract":"We formulate the problem of estimating risk prices in a stochastic discount factor (SDF) model as an instrumental variables regression. The IV estimator allows efficient estimation for models with non-traded factors and many test assets. Optimal instruments are constructed using a regularized sparse first stage regression. In a simulation study, the IV estimator is close to the infeasible GMM estimator in a setting with many assets. In an empirical application, the tracking portfolio for consumption growth appears strongly correlated with consumption news. It implies that consumption is a priced factor for the cross-section of excess equity returns. A similar regularized regression, projecting the SDF on test assets, leads to an estimate of the Hansen–Jagannathan distance, and identifies portfolios that maximally violate the pricing implications of the model.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"25 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbae002","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the problem of estimating risk prices in a stochastic discount factor (SDF) model as an instrumental variables regression. The IV estimator allows efficient estimation for models with non-traded factors and many test assets. Optimal instruments are constructed using a regularized sparse first stage regression. In a simulation study, the IV estimator is close to the infeasible GMM estimator in a setting with many assets. In an empirical application, the tracking portfolio for consumption growth appears strongly correlated with consumption news. It implies that consumption is a priced factor for the cross-section of excess equity returns. A similar regularized regression, projecting the SDF on test assets, leads to an estimate of the Hansen–Jagannathan distance, and identifies portfolios that maximally violate the pricing implications of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多种测试资产进行经验资产定价
我们将随机贴现因子(SDF)模型中的风险价格估计问题表述为工具变量回归。IV 估计器可以对具有非交易因子和许多测试资产的模型进行有效估计。使用正则化稀疏第一阶段回归构建最佳工具。在模拟研究中,IV 估计器在有许多资产的情况下接近于不可行的 GMM 估计器。在实证应用中,消费增长的跟踪组合与消费新闻密切相关。这意味着消费是股票超额收益截面的定价因素。通过对测试资产的 SDF 进行类似的正则化回归,可以估算出 Hansen-Jagannathan 距离,并识别出最大程度违反模型定价含义的投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
期刊最新文献
Large-Dimensional Portfolio Selection with a High-Frequency-Based Dynamic Factor Model Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach A Structural Break in the Aggregate Earnings–Returns Relation Large Sample Estimators of the Stochastic Discount Factor Jump Clustering, Information Flows, and Stock Price Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1