{"title":"Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review","authors":"Giles Blaney, Angelo Sassaroli, Sergio Fantini","doi":"10.1142/s1793545824300015","DOIUrl":null,"url":null,"abstract":"<p>This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous wave, frequency domain, and time domain, each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting one-, two-, and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods, domains, and data types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in Appendix A, including the code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/s1793545824300015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous wave, frequency domain, and time domain, each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting one-, two-, and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods, domains, and data types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in Appendix A, including the code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.
本综述重点关注光学漫射介质中局部吸收变化敏感度的空间分布,尤其是与近红外光谱相关的测量。连续波、频域和时域这三个时域分别获取不同的光学数据类型,其变化可能与吸收系数的有效均匀变化有关。灵敏度是局部扰动与恢复的有效同质吸收变化之间的关系。因此,可以为三个时域的众多光学数据类型生成代表扰动位置的空间灵敏度图。综述首先介绍了过去 30 年来研究光学漫射介质中这种灵敏度的工作历史。这些工作既有实验性的,也有理论性的,针对不同的近红外光谱方法、领域和数据类型提出了一维、二维和三维灵敏度图。根据这段历史,我们按时域和数据类型介绍了灵敏度图简编。该汇编提供了一个宝贵的工具,可在一份文件中比较各种测量方法和参数的空间灵敏度。附录 A 提供了生成这些地图的方法,包括代码。这份历史回顾和综合灵敏度地图汇编为研究人员提供了一个单一来源,可用于可视化、调查、比较和生成对局部吸收变化的灵敏度地图。
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.