首页 > 最新文献

Journal of Innovative Optical Health Sciences最新文献

英文 中文
Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network 使用动态-YOLOv4 网络对红细胞和血小板进行无标记体内分类和跟踪
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2024-05-25 DOI: 10.1142/s1793545824500093
Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei

In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment, which renders it a valuable tool for both scientific research and clinical applications. However, the conventional approach for improving classification accuracy often involves labeling cells with fluorescence, which can lead to potential phototoxicity. This study proposes a label-free in-vivo flow cytometry technique, called dynamic YOLOv4 (D-YOLOv4), which improves classification accuracy by integrating absorption intensity fluctuation modulation (AIFM) into YOLOv4 to demodulate the temporal features of moving red blood cells (RBCs) and platelets. Using zebrafish as an experimental model, the D-YOLOv4 method achieved average precisions (APs) of 0.90 for RBCs and 0.64 for thrombocytes (similar to platelets in mammals), resulting in an overall AP of 0.77. These scores notably surpass those attained by alternative network models, thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivo flow cytometry, which holds promise for diverse in-vivo cell classification applications.

体内流式细胞术是一种无创实时诊断技术,可在不干扰细胞自然生物环境的情况下对细胞进行连续监测,因此是科学研究和临床应用的重要工具。然而,提高分类准确性的传统方法往往涉及用荧光标记细胞,这可能会导致潜在的光毒性。本研究提出了一种称为动态 YOLOv4(D-YOLOv4)的无标记活体流式细胞仪技术,通过将吸收强度波动调制(AIFM)整合到 YOLOv4 中来解调移动红细胞(RBC)和血小板的时间特征,从而提高分类准确性。以斑马鱼为实验模型,D-YOLOv4 方法对红细胞和血小板(类似于哺乳动物的血小板)的平均精确度(AP)分别达到了 0.90 和 0.64,总体精确度为 0.77。这些分数明显超过了其他网络模型所能达到的分数,从而证明物理模型与神经网络的结合为开发无标记体内流式细胞仪提供了一种创新方法,为各种体内细胞分类应用带来了希望。
{"title":"Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network","authors":"Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei","doi":"10.1142/s1793545824500093","DOIUrl":"https://doi.org/10.1142/s1793545824500093","url":null,"abstract":"<p><i>In-vivo</i> flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment, which renders it a valuable tool for both scientific research and clinical applications. However, the conventional approach for improving classification accuracy often involves labeling cells with fluorescence, which can lead to potential phototoxicity. This study proposes a label-free <i>in-vivo</i> flow cytometry technique, called dynamic YOLOv4 (D-YOLOv4), which improves classification accuracy by integrating absorption intensity fluctuation modulation (AIFM) into YOLOv4 to demodulate the temporal features of moving red blood cells (RBCs) and platelets. Using zebrafish as an experimental model, the D-YOLOv4 method achieved average precisions (APs) of 0.90 for RBCs and 0.64 for thrombocytes (similar to platelets in mammals), resulting in an overall AP of 0.77. These scores notably surpass those attained by alternative network models, thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free <i>in-vivo</i> flow cytometry, which holds promise for diverse <i>in-vivo</i> cell classification applications.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"40 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image 从眼底结构图像预测眼底荧光素血管造影图像的统一深度学习模型
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2024-03-22 DOI: 10.1142/s1793545824500032
Yiwei Chen, Yi He, Hong Ye, Lina Xing, Xin Zhang, Guohua Shi

The prediction of fundus fluorescein angiography (FFA) images from fundus structural images is a cutting-edge research topic in ophthalmological image processing. Prediction comprises estimating FFA from fundus camera imaging, single-phase FFA from scanning laser ophthalmoscopy (SLO), and three-phase FFA also from SLO. Although many deep learning models are available, a single model can only perform one or two of these prediction tasks. To accomplish three prediction tasks using a unified method, we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network. The three prediction tasks are processed as follows: data preparation, network training under FFA supervision, and FFA image prediction from fundus structure images on a test set. By comparing the FFA images predicted by our model, pix2pix, and CycleGAN, we demonstrate the remarkable progress achieved by our proposal. The high performance of our model is validated in terms of the peak signal-to-noise ratio, structural similarity index, and mean squared error.

从眼底结构图像预测眼底荧光素血管造影(FFA)图像是眼科图像处理领域的前沿研究课题。预测包括通过眼底照相机成像估算 FFA、通过扫描激光眼底镜(SLO)估算单相 FFA 和通过 SLO 估算三相 FFA。虽然目前有许多深度学习模型,但单一模型只能完成其中的一两项预测任务。为了用一种统一的方法完成三项预测任务,我们提出了一种统一的深度学习模型,利用有监督的生成对抗网络从眼底结构图像中预测 FFA 图像。三项预测任务的处理过程如下:数据准备、FFA 监督下的网络训练以及在测试集上从眼底结构图像预测 FFA 图像。通过比较我们的模型、pix2pix 和 CycleGAN 预测的 FFA 图像,我们证明了我们的建议所取得的显著进步。我们模型的高性能在峰值信噪比、结构相似性指数和均方误差方面都得到了验证。
{"title":"Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image","authors":"Yiwei Chen, Yi He, Hong Ye, Lina Xing, Xin Zhang, Guohua Shi","doi":"10.1142/s1793545824500032","DOIUrl":"https://doi.org/10.1142/s1793545824500032","url":null,"abstract":"<p>The prediction of fundus fluorescein angiography (FFA) images from fundus structural images is a cutting-edge research topic in ophthalmological image processing. Prediction comprises estimating FFA from fundus camera imaging, single-phase FFA from scanning laser ophthalmoscopy (SLO), and three-phase FFA also from SLO. Although many deep learning models are available, a single model can only perform one or two of these prediction tasks. To accomplish three prediction tasks using a unified method, we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network. The three prediction tasks are processed as follows: data preparation, network training under FFA supervision, and FFA image prediction from fundus structure images on a test set. By comparing the FFA images predicted by our model, pix2pix, and CycleGAN, we demonstrate the remarkable progress achieved by our proposal. The high performance of our model is validated in terms of the peak signal-to-noise ratio, structural similarity index, and mean squared error.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"132 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of polarization-based technology for biomedical applications 基于偏振技术的生物医学应用回顾
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2024-03-22 DOI: 10.1142/s1793545824300027
Caizhong Guan, Nan Zeng, Honghui He

Polarimetry is a powerful optical tool in the biomedical field, providing more comprehensive information on the sub-wavelength micro-physical structure of a sample than traditional light intensity measurement techniques. This review summarizes the concepts and techniques of polarization and its biomedical applications. Specifically, we first briefly describe the basic principles of polarized light and the Mueller matrix (MM) decomposition method, followed by some research progress of polarimetric measurement techniques in recent years. Finally, we introduce some studies on biological tissues and cells, and then illustrate the application value of polarization optical method.

偏振测量法是生物医学领域的一种强大光学工具,与传统的光强测量技术相比,它能提供有关样品亚波长微物理结构的更全面信息。本综述总结了偏振及其生物医学应用的概念和技术。具体来说,我们首先简要介绍了偏振光的基本原理和穆勒矩阵(MM)分解方法,然后介绍了近年来偏振测量技术的一些研究进展。最后,我们介绍了一些关于生物组织和细胞的研究,并说明了偏振光学方法的应用价值。
{"title":"Review of polarization-based technology for biomedical applications","authors":"Caizhong Guan, Nan Zeng, Honghui He","doi":"10.1142/s1793545824300027","DOIUrl":"https://doi.org/10.1142/s1793545824300027","url":null,"abstract":"<p>Polarimetry is a powerful optical tool in the biomedical field, providing more comprehensive information on the sub-wavelength micro-physical structure of a sample than traditional light intensity measurement techniques. This review summarizes the concepts and techniques of polarization and its biomedical applications. Specifically, we first briefly describe the basic principles of polarized light and the Mueller matrix (MM) decomposition method, followed by some research progress of polarimetric measurement techniques in recent years. Finally, we introduce some studies on biological tissues and cells, and then illustrate the application value of polarization optical method.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"23 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review 各种近红外光谱仪方法对吸收变化的空间灵敏度:简编综述
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2024-02-24 DOI: 10.1142/s1793545824300015
Giles Blaney, Angelo Sassaroli, Sergio Fantini

This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous wave, frequency domain, and time domain, each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting one-, two-, and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods, domains, and data types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in Appendix A, including the code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.

本综述重点关注光学漫射介质中局部吸收变化敏感度的空间分布,尤其是与近红外光谱相关的测量。连续波、频域和时域这三个时域分别获取不同的光学数据类型,其变化可能与吸收系数的有效均匀变化有关。灵敏度是局部扰动与恢复的有效同质吸收变化之间的关系。因此,可以为三个时域的众多光学数据类型生成代表扰动位置的空间灵敏度图。综述首先介绍了过去 30 年来研究光学漫射介质中这种灵敏度的工作历史。这些工作既有实验性的,也有理论性的,针对不同的近红外光谱方法、领域和数据类型提出了一维、二维和三维灵敏度图。根据这段历史,我们按时域和数据类型介绍了灵敏度图简编。该汇编提供了一个宝贵的工具,可在一份文件中比较各种测量方法和参数的空间灵敏度。附录 A 提供了生成这些地图的方法,包括代码。这份历史回顾和综合灵敏度地图汇编为研究人员提供了一个单一来源,可用于可视化、调查、比较和生成对局部吸收变化的灵敏度地图。
{"title":"Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review","authors":"Giles Blaney, Angelo Sassaroli, Sergio Fantini","doi":"10.1142/s1793545824300015","DOIUrl":"https://doi.org/10.1142/s1793545824300015","url":null,"abstract":"<p>This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media, particularly for measurements relevant to near-infrared spectroscopy. The three temporal domains, continuous wave, frequency domain, and time domain, each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient. Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change. Therefore, spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains. The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media. These works are experimental and theoretical, presenting one-, two-, and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods, domains, and data types. Following this history, we present a compendium of sensitivity maps organized by temporal domain and then data type. This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document. Methods for one to generate these maps are provided in Appendix A, including the code. This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize, investigate, compare, and generate sensitivity to localized absorption change maps.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"7 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distal-scanning common path probe for optical coherence tomography 用于光学相干断层扫描的远端扫描共路探头
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-12-30 DOI: 10.1142/s1793545823500347
Zhengyu Chen, Bin He, Zichen Yin, Zhangwei Hu, Yejiong Shi, Chengming Wang, Xiao Zhang, Ning Zhang, Linkai Jing, Guihuai Wang, Ping Xue
{"title":"Distal-scanning common path probe for optical coherence tomography","authors":"Zhengyu Chen, Bin He, Zichen Yin, Zhangwei Hu, Yejiong Shi, Chengming Wang, Xiao Zhang, Ning Zhang, Linkai Jing, Guihuai Wang, Ping Xue","doi":"10.1142/s1793545823500347","DOIUrl":"https://doi.org/10.1142/s1793545823500347","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"154 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vein visualization enhancement by dual-wavelength phase-locked denoising technology 双波长锁相去噪技术提高静脉可视化效果
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-12-29 DOI: 10.1142/s1793545823500335
Lihua Ruan, Zhiqin Yin, Shibing Zhou, Weibo Zheng, Wei Lu, Tao Zhang, Shaowei Wang
{"title":"Vein visualization enhancement by dual-wavelength phase-locked denoising technology","authors":"Lihua Ruan, Zhiqin Yin, Shibing Zhou, Weibo Zheng, Wei Lu, Tao Zhang, Shaowei Wang","doi":"10.1142/s1793545823500335","DOIUrl":"https://doi.org/10.1142/s1793545823500335","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":" 22","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139143329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIR-II fluorescence imaging in liver tumor surgery: A narrative review 肝脏肿瘤手术中的近红外-II荧光成像:综述
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-12-08 DOI: 10.1142/s1793545823300100
Zihao Liu, Lifeng Yan, Qingsong Hu, Dalong Yin
{"title":"NIR-II fluorescence imaging in liver tumor surgery: A narrative review","authors":"Zihao Liu, Lifeng Yan, Qingsong Hu, Dalong Yin","doi":"10.1142/s1793545823300100","DOIUrl":"https://doi.org/10.1142/s1793545823300100","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"517 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoacoustic elastography based on laser-excited shear wave 基于激光激发剪切波的光声弹性成像技术
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-12-08 DOI: 10.1142/s1793545823500311
Yang Liu, Ruoyi Shi, Gang Li, Mingjian Sun
{"title":"Photoacoustic elastography based on laser-excited shear wave","authors":"Yang Liu, Ruoyi Shi, Gang Li, Mingjian Sun","doi":"10.1142/s1793545823500311","DOIUrl":"https://doi.org/10.1142/s1793545823500311","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"260 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo measurement of NADH fluorescence lifetime in skeletal muscle via fiber-coupled time-correlated single photon counting 通过纤维耦合时间相关单光子计数法在体内测量骨骼肌中的 NADH 荧光寿命
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-12-08 DOI: 10.1142/s179354582350030x
Kathryn M. Priest, Jacob V. Schluns, Nathania Nischal, Colton L. Gattis, Jeffrey C. Wolchok, Timothy J. Muldoon
{"title":"In vivo measurement of NADH fluorescence lifetime in skeletal muscle via fiber-coupled time-correlated single photon counting","authors":"Kathryn M. Priest, Jacob V. Schluns, Nathania Nischal, Colton L. Gattis, Jeffrey C. Wolchok, Timothy J. Muldoon","doi":"10.1142/s179354582350030x","DOIUrl":"https://doi.org/10.1142/s179354582350030x","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"227 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of cross-polarization imaging in distinguishing between squamous and columnar epithelium of the cervix 交叉偏振成像在区分宫颈鳞状上皮和柱状上皮中的应用
IF 2.5 3区 医学 Q2 OPTICS Pub Date : 2023-11-23 DOI: 10.1142/s1793545823430022
Cat Phan Ngoc Khuong, H. Trung, Duc Le Huynh, Quynh Nguyen Ngoc, Hai Pham Thanh, Long Nguyen, Hanh Tran Thi Thu, T. L. Anh, Tienen T G Van
{"title":"Application of cross-polarization imaging in distinguishing between squamous and columnar epithelium of the cervix","authors":"Cat Phan Ngoc Khuong, H. Trung, Duc Le Huynh, Quynh Nguyen Ngoc, Hai Pham Thanh, Long Nguyen, Hanh Tran Thi Thu, T. L. Anh, Tienen T G Van","doi":"10.1142/s1793545823430022","DOIUrl":"https://doi.org/10.1142/s1793545823430022","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"32 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139243346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Innovative Optical Health Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1