Phase Inversion-Based Microfluidic-Fiber-Spinning Assembly of Self-Supported rGO/PEDOT FiberFabrics Towards Wearable Supercapacitors

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-03-15 DOI:10.1007/s42765-024-00373-0
Liangliang Zhou, Yujiao Zhang, Hui Qiu, Jijun Xiao, Su Chen, Yong Liu
{"title":"Phase Inversion-Based Microfluidic-Fiber-Spinning Assembly of Self-Supported rGO/PEDOT FiberFabrics Towards Wearable Supercapacitors","authors":"Liangliang Zhou,&nbsp;Yujiao Zhang,&nbsp;Hui Qiu,&nbsp;Jijun Xiao,&nbsp;Su Chen,&nbsp;Yong Liu","doi":"10.1007/s42765-024-00373-0","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for wearable electronics is still growing, and the rapid development of new electrochemical materials and manufacturing processes allows for innovative approaches to power these devices. Here, three-dimensional (3D) self-supported reduced graphene oxide/poly(3,4-ethylenedioxythiophene) (rGO/PEDOT) hybrid fiber fabrics are systematically designed and constructed via phase inversion-based microfluidic-fiber-spinning assembly (MFSA) method, followed by concentrated sulfuric acid treatment and chemical reduction. The rGO/PEDOT fiber fabrics demonstrate favorable flexibility, interconnected hierarchical network, large specific surface area, high charge storage capacity, and high electrical conductivity. In addition, the all-solid-state supercapacitor made of these rGO/PEDOT fiber fabrics proves large specific capacitance (1028.2 mF cm<sup>−2</sup>), ultrahigh energy density (22.7 μWh cm<sup>−2</sup>), long-term cycling stability, and excellent flexibility (capacitance retention remains at 84%, after 5000 cycles of continuous deformation at 180<sup>o</sup> bending angles). Further considering those remarkable electrochemical properties, a wearable self-powered device with a sandwich-shaped supercapacitor (SC) is designed to impressively light up LEDs and power mini game console, suggesting its practical applications in flexible and portable smart electronics.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 3","pages":"798 - 809"},"PeriodicalIF":17.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00373-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for wearable electronics is still growing, and the rapid development of new electrochemical materials and manufacturing processes allows for innovative approaches to power these devices. Here, three-dimensional (3D) self-supported reduced graphene oxide/poly(3,4-ethylenedioxythiophene) (rGO/PEDOT) hybrid fiber fabrics are systematically designed and constructed via phase inversion-based microfluidic-fiber-spinning assembly (MFSA) method, followed by concentrated sulfuric acid treatment and chemical reduction. The rGO/PEDOT fiber fabrics demonstrate favorable flexibility, interconnected hierarchical network, large specific surface area, high charge storage capacity, and high electrical conductivity. In addition, the all-solid-state supercapacitor made of these rGO/PEDOT fiber fabrics proves large specific capacitance (1028.2 mF cm−2), ultrahigh energy density (22.7 μWh cm−2), long-term cycling stability, and excellent flexibility (capacitance retention remains at 84%, after 5000 cycles of continuous deformation at 180o bending angles). Further considering those remarkable electrochemical properties, a wearable self-powered device with a sandwich-shaped supercapacitor (SC) is designed to impressively light up LEDs and power mini game console, suggesting its practical applications in flexible and portable smart electronics.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相位反转的自支撑 rGO/PEDOT 纤维织物的微流体纤维纺丝组装,实现可穿戴超级电容器
摘要 对可穿戴电子设备的需求仍在不断增长,而新型电化学材料和制造工艺的快速发展使得为这些设备供电的创新方法成为可能。本文通过基于相位反转的微流体-纤维纺丝组装(MFSA)方法,系统地设计和构建了三维(3D)自支撑还原氧化石墨烯/聚(3,4-亚乙二氧基噻吩)(rGO/PEDOT)混合纤维织物,然后进行浓硫酸处理和化学还原。rGO/PEDOT 纤维织物具有良好的柔韧性、相互连接的分层网络、大比表面积、高电荷存储容量和高导电性。此外,由这些 rGO/PEDOT 纤维织物制成的全固态超级电容器还具有高比电容(1028.2 mF cm-2)、超高能量密度(22.7 μWh cm-2)、长期循环稳定性和出色的柔韧性(在 180o 弯曲角度下连续变形 5000 次后,电容保持率仍为 84%)。考虑到这些卓越的电化学特性,我们设计了一种采用三明治形状超级电容器(SC)的可穿戴自供电装置,它能点亮 LED 灯并为微型游戏机供电,令人印象深刻,这表明它在柔性和便携式智能电子产品中具有实际应用价值。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1