Treatment of food processing industries wastewaters using a new clay-based inorganic membrane: Performance evaluation and fouling analysis

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2025-01-01 DOI:10.1016/j.jtice.2024.105439
S. Lakshmi Sandhya Rani , K.V.V. Satyannarayana , G. Arthanareeswaran , Vinoth Kumar Raja
{"title":"Treatment of food processing industries wastewaters using a new clay-based inorganic membrane: Performance evaluation and fouling analysis","authors":"S. Lakshmi Sandhya Rani ,&nbsp;K.V.V. Satyannarayana ,&nbsp;G. Arthanareeswaran ,&nbsp;Vinoth Kumar Raja","doi":"10.1016/j.jtice.2024.105439","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ceramic membranes are intensely extending their applicability in wastewater treatment due to their excellent resistance to corrosive environment, anti-fouling nature, and longer lifetime. To further widen the usage of ceramic membranes despite of their high cost, development of inexpensive ceramic membranes is highly anticipated.</div></div><div><h3>Method</h3><div>A novel inexpensive Fuller's earth clay ceramic membrane's performance was evaluated in treating the wastewater obtained from two food processing industries, namely the dairy industry and palm oil industry, by varying the applied pressure from 0.35 – 2 bar. Furthermore, the fouling mechanism concerning the microfiltration of wastewater was identified with the help of Hermia's pore blocking models.</div></div><div><h3>Significant Findings</h3><div>The prepared novel Fuller's earth clay ceramic membrane significantly reduced COD content below the permissible discharge limit (&lt; 200 mg/L) for dairy and palm oil industry wastewaters at a pressure of 0.35 bar. Notably, 98 – 99 % removal of turbidity and suspended solids was achieved. Also, the total phosphorus content was brought down below the permissible discharge limit of 5 mg/L. From fouling analysis, it was inferred that the cake filtration model appropriately fits the obtained experimental results, confirming the anti-fouling nature of the fabricated clay membrane in treating food process industries' wastewater.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"166 ","pages":"Article 105439"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187610702400097X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Ceramic membranes are intensely extending their applicability in wastewater treatment due to their excellent resistance to corrosive environment, anti-fouling nature, and longer lifetime. To further widen the usage of ceramic membranes despite of their high cost, development of inexpensive ceramic membranes is highly anticipated.

Method

A novel inexpensive Fuller's earth clay ceramic membrane's performance was evaluated in treating the wastewater obtained from two food processing industries, namely the dairy industry and palm oil industry, by varying the applied pressure from 0.35 – 2 bar. Furthermore, the fouling mechanism concerning the microfiltration of wastewater was identified with the help of Hermia's pore blocking models.

Significant Findings

The prepared novel Fuller's earth clay ceramic membrane significantly reduced COD content below the permissible discharge limit (< 200 mg/L) for dairy and palm oil industry wastewaters at a pressure of 0.35 bar. Notably, 98 – 99 % removal of turbidity and suspended solids was achieved. Also, the total phosphorus content was brought down below the permissible discharge limit of 5 mg/L. From fouling analysis, it was inferred that the cake filtration model appropriately fits the obtained experimental results, confirming the anti-fouling nature of the fabricated clay membrane in treating food process industries' wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新型粘土基无机膜处理食品加工业废水:性能评估和污垢分析
[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Engineering heterojunction of multi-morphologies and bifunctional hybrid rGO-V2O5 embedded CeO2 nanostructures for robust visible-light-driven dye degradation and supercapacitor Corrigendum to “Sun-light-driven Z-scheme photocatalytic annihilation of Rhodamine B, Hydrogen production and stability assessment via facile hydrothermal preparation of novel nanocomposite Nb2O5/TiS2” [Journal of the Taiwan Institute of Chemical Engineers 169 (2025) 105976-105989] Investigation of transport and acoustic properties of binary mixtures of 2–amino–1–butanol with isomeric butanol at 298.15 K–318.15 K: Graph theoretical approach and bloomfield–Devan model Solubility, solvent effects and thermodynamic properties of N-Ethyl-p-toluenesulfonamide in twelve pure organic solvents Multi-Technique assessment of zaleplon for corrosion control in mild steel using 1M HCl media: A study incorporating molecular dynamics, electrochemical testing, and morphological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1