{"title":"Photovoltaic Inverter Failure Mechanism Estimation Using Unsupervised Machine Learning and Reliability Assessment","authors":"Sukanta Roy;Shahid Tufail;Mohd Tariq;Arif Sarwat","doi":"10.1109/TR.2024.3359540","DOIUrl":null,"url":null,"abstract":"This article introduces a data-driven approach to assessing failure mechanisms and reliability degradation in outdoor photovoltaic (PV) string inverters. The manufacturer's stated PV inverter lifetime can vary due to the impact of operating site conditions. To address limitations in degradation estimation through accelerated testing, condition monitoring, or degradation modeling, we propose a machine learning (ML) oriented approach. Utilizing data from a 1.4 MW PV power plant operational since 2016, with 46 string PV inverters tied to the grid, we employ the unsupervised one-class support vector machine ML technique to analyze inverter and sensor data, capable of classifying humidity cycling and temperature fluctuations as dominant failure mechanisms. Utilizing the anomaly alert relationship and alert details specific to the inverter, the level of PV inverter output is considered as its availability or available reliability. Subsequently, a continuous Markov model is applied to six-month alert data, revealing an average stated reliability of 20% after 20 years of continuous operation. These results support recommendations for time-bound preventive measures to enhance PV inverter reliability under diverse outdoor conditions. The approach provides a nondestructive, top–down, and generalized method for analyzing any commercial PV inverter exposed to outdoor conditions, contingent on the availability of relevant data.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"73 3","pages":"1418-1432"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10472779/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a data-driven approach to assessing failure mechanisms and reliability degradation in outdoor photovoltaic (PV) string inverters. The manufacturer's stated PV inverter lifetime can vary due to the impact of operating site conditions. To address limitations in degradation estimation through accelerated testing, condition monitoring, or degradation modeling, we propose a machine learning (ML) oriented approach. Utilizing data from a 1.4 MW PV power plant operational since 2016, with 46 string PV inverters tied to the grid, we employ the unsupervised one-class support vector machine ML technique to analyze inverter and sensor data, capable of classifying humidity cycling and temperature fluctuations as dominant failure mechanisms. Utilizing the anomaly alert relationship and alert details specific to the inverter, the level of PV inverter output is considered as its availability or available reliability. Subsequently, a continuous Markov model is applied to six-month alert data, revealing an average stated reliability of 20% after 20 years of continuous operation. These results support recommendations for time-bound preventive measures to enhance PV inverter reliability under diverse outdoor conditions. The approach provides a nondestructive, top–down, and generalized method for analyzing any commercial PV inverter exposed to outdoor conditions, contingent on the availability of relevant data.
期刊介绍:
IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.