Two Types of Plasma Channel Structure in High Pressure Pulse Discharge in Cesium

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Letters Pub Date : 2024-03-14 DOI:10.1134/s1063785023010091
F. G. Baksht, V. F. Lapshin
{"title":"Two Types of Plasma Channel Structure in High Pressure Pulse Discharge in Cesium","authors":"F. G. Baksht, V. F. Lapshin","doi":"10.1134/s1063785023010091","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Simulation of the pulse-periodic high pressure cesium discharge is performed on the basis of equations of radiative gas dynamics. It is shown that in the discharge it is possible to implement two different types of structure of the plasma channel. At the beginning of the current pulse, the plasma discharge channel has a centered structure. At the same time, most of the plasma is concentrated near the discharge axis. The concentration of charged particles decreases along the radius. Then, if the current amplitude is large enough, during the plasma heating process, a transformation from the centered to the shell structure of the channel occurs. In this case, most of the plasma is concentrated on the periphery of the discharge and its concentration increases along the radius from the axis to the walls of the tube. It is shown that the transition from one channel structure to another occurs at a time when the specific heat capacity of the plasma near the axis reaches a deep minimum corresponding to a completely single ionized <i>e</i>–<i>i</i>-plasma.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023010091","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation of the pulse-periodic high pressure cesium discharge is performed on the basis of equations of radiative gas dynamics. It is shown that in the discharge it is possible to implement two different types of structure of the plasma channel. At the beginning of the current pulse, the plasma discharge channel has a centered structure. At the same time, most of the plasma is concentrated near the discharge axis. The concentration of charged particles decreases along the radius. Then, if the current amplitude is large enough, during the plasma heating process, a transformation from the centered to the shell structure of the channel occurs. In this case, most of the plasma is concentrated on the periphery of the discharge and its concentration increases along the radius from the axis to the walls of the tube. It is shown that the transition from one channel structure to another occurs at a time when the specific heat capacity of the plasma near the axis reaches a deep minimum corresponding to a completely single ionized ei-plasma.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铯高压脉冲放电中的两种等离子体通道结构
摘要 根据辐射气体动力学方程对脉冲周期性高压铯放电进行了模拟。结果表明,在放电中可以实现两种不同类型的等离子体通道结构。在电流脉冲开始时,等离子体放电通道具有中心结构。同时,大部分等离子体集中在放电轴附近。带电粒子的浓度沿半径方向递减。然后,如果电流振幅足够大,在等离子体加热过程中,通道会从中心结构转变为壳结构。在这种情况下,大部分等离子体集中在放电的外围,其浓度沿半径从轴线到管壁逐渐增加。研究表明,从一种通道结构向另一种通道结构过渡时,轴附近等离子体的比热容达到了深度最小值,相当于完全单一的电离电子等离子体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
期刊最新文献
Bifurcation Analysis of Electrodynamic Systems Containing Nonlinear Semiconductor Microstructures with Negative Differential Conductivity Computational Modeling of the Scenario of Resumption of Covid-19 Waves under Pulse Evolution in New Omicron Lines A Hardware–Software Complex for Diagnostics of a Human Being’s Psychophysiological State during the Solution of Cognitive Tasks Effect of an External Electric Field on the Intracenter Optical Transitions in Quasi-Zero-Dimensional Semiconductor Structures Mathematical Modeling of Diffraction and Parametric Instability Thresholds for Magnetic Nanostructures Based on Magnetically Functionalized Carbon Nanotube Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1