{"title":"Lattice realization of the axial U(1) non-invertible symmetry","authors":"Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki","doi":"10.1093/ptep/ptae040","DOIUrl":null,"url":null,"abstract":"In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"26 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae040","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.