{"title":"A particle method for non-local advection–selection–mutation equations","authors":"Frank Ernesto Alvarez, Jules Guilberteau","doi":"10.1142/s0218202524500106","DOIUrl":null,"url":null,"abstract":"<p>The well-posedness of a non-local advection–selection–mutation problem deriving from adaptive dynamics models is shown for a wide family of initial data. A particle method is then developed, in order to approximate the solution of such problem by a regularized sum of weighted Dirac masses whose characteristics solve a suitably defined ODE system. The convergence of the particle method over any finite interval is shown and an explicit rate of convergence is given. Furthermore, we investigate the asymptotic-preserving properties of the method in large times, providing sufficient conditions for it to hold true as well as examples and counter-examples. Finally, we illustrate the method in two cases taken from the literature.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The well-posedness of a non-local advection–selection–mutation problem deriving from adaptive dynamics models is shown for a wide family of initial data. A particle method is then developed, in order to approximate the solution of such problem by a regularized sum of weighted Dirac masses whose characteristics solve a suitably defined ODE system. The convergence of the particle method over any finite interval is shown and an explicit rate of convergence is given. Furthermore, we investigate the asymptotic-preserving properties of the method in large times, providing sufficient conditions for it to hold true as well as examples and counter-examples. Finally, we illustrate the method in two cases taken from the literature.