Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus
{"title":"Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus","authors":"Yang Zheng, Yinghao Feng, Zhejin Li, Junwen Wang","doi":"10.1002/arch.22102","DOIUrl":null,"url":null,"abstract":"<p>The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips <i>Frankliniella occidentalis</i> that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight <i>F. occidentalis</i> CP genes (<i>FoCP</i>s) were annotated in this study and they were classified into 10 distinct families, including 68 <i>CPR</i>s, 16 <i>CPAP1</i>s, 6 <i>CPAP3</i>s, 2 <i>CPCFC</i>s, 10 <i>Tweedle</i>s, 4 <i>CPF</i>s, 16 <i>CPLCP</i>s, and 6 <i>CPG</i>s. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of <i>F. occidentalis</i>. Transcriptome analysis revealed more than 30% <i>FoCP</i>s were upregulated at least 1.5-fold when <i>F. occidentalis</i> was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of <i>F. occidentalis</i> CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22102","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.