首页 > 最新文献

Archives of Insect Biochemistry and Physiology最新文献

英文 中文
Evaluating the Potential Immunostimulatory Effects of Cryptomeria japonica Leaf Essential Oil on Honey Bees (Apis mellifera)
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1002/arch.70040
Hao-Yung Wang, Ying-Yu Chen, Chin-Jung Liu, Shih-Wei Huang, Shang-Tse Ho

This study investigated the effects of Cryptomeria japonica leaf essential oil (CjLEO) on honey bee health, focusing on both toxicity and gene expression modulation. Initial toxicity assessments revealed that high concentrations of CjLEO (75 and 100 ppm) were lethal to honey bees, resulting in complete mortality within a short period. Conversely, a lower concentration of 10 ppm exhibited no significant toxic effects, prompting further investigation into its sublethal impacts. Transcriptome analysis via next-generation sequencing demonstrated that CjLEO at 10 ppm induced significant changes in honey bee gene expression compared to the control group. Principal component analysis (PCA) and differential gene expression (DEG) analysis identified more than 9,000 genes, with notable upregulation of immune-related genes, including hymenoptaecin, abaecin, and apidaecin1. Gene ontology (GO) enrichment analysis indicated that these differentially expressed genes were primarily associated with immune responses, such as defense and innate immune pathways. The chemical composition of CjLEO, characterized by GC–MS, identified 16 compounds, with major components including α-pinene, elemol, α-eudesmol, and kaur-16-ene. These compounds are known for their antimicrobial properties, which likely contribute to the observed immunomodulatory effects. CjLEO at a concentration of 10 ppm enhances honey bee immunity without exhibiting significant toxicity, positioning it a promising candidate for improving honey bee resilience against pathogens. Future research should investigate the mechanisms of immune activation and optimize application methods for practical beekeeping, aiming to improve colony health while reducing dependence on synthetic chemicals.

{"title":"Evaluating the Potential Immunostimulatory Effects of Cryptomeria japonica Leaf Essential Oil on Honey Bees (Apis mellifera)","authors":"Hao-Yung Wang,&nbsp;Ying-Yu Chen,&nbsp;Chin-Jung Liu,&nbsp;Shih-Wei Huang,&nbsp;Shang-Tse Ho","doi":"10.1002/arch.70040","DOIUrl":"https://doi.org/10.1002/arch.70040","url":null,"abstract":"<div>\u0000 \u0000 <p>This study investigated the effects of <i>Cryptomeria japonica</i> leaf essential oil (CjLEO) on honey bee health, focusing on both toxicity and gene expression modulation. Initial toxicity assessments revealed that high concentrations of CjLEO (75 and 100 ppm) were lethal to honey bees, resulting in complete mortality within a short period. Conversely, a lower concentration of 10 ppm exhibited no significant toxic effects, prompting further investigation into its sublethal impacts. Transcriptome analysis via next-generation sequencing demonstrated that CjLEO at 10 ppm induced significant changes in honey bee gene expression compared to the control group. Principal component analysis (PCA) and differential gene expression (DEG) analysis identified more than 9,000 genes, with notable upregulation of immune-related genes, including <i>hymenoptaecin</i>, <i>abaecin</i>, and <i>apidaecin1</i>. Gene ontology (GO) enrichment analysis indicated that these differentially expressed genes were primarily associated with immune responses, such as defense and innate immune pathways. The chemical composition of CjLEO, characterized by GC–MS, identified 16 compounds, with major components including α-pinene, elemol, α-eudesmol, and kaur-16-ene. These compounds are known for their antimicrobial properties, which likely contribute to the observed immunomodulatory effects. CjLEO at a concentration of 10 ppm enhances honey bee immunity without exhibiting significant toxicity, positioning it a promising candidate for improving honey bee resilience against pathogens. Future research should investigate the mechanisms of immune activation and optimize application methods for practical beekeeping, aiming to improve colony health while reducing dependence on synthetic chemicals.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Control of Social Experience-Dependent Changes in Locomotor Activity in Drosophila melanogaster Males
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1002/arch.70022
Julia V. Bragina, Anna A. Goncharova, Natalia G. Besedina, Larisa V. Danilenkova, Elena A. Kamysheva, Nikolai G. Kamyshev

In animals, social experience plays an important role in the adaptive modification of behavior. Previous social experience changes locomotor activity in Drosophila melanogaster. In females, suppression of locomotion is observed only when flies are in aggregations, but males retain a reduced level of locomotor activity up to 5 days after being isolated from the group. The mechanisms underlying such behavioral plasticity still largely are unknown. In this study, we aimed to identify new candidate genes involved in the social experience-dependent modification of locomotor activity. We tested the effect of social experience on spontaneous locomotor activity in various mutant males, including those with impaired learning and memory, circadian rhythms, some biochemical pathways, and sensory systems. The results of the present study indicate that the biogenic amines and olfactory perception appear to play key roles in social experience-induced changes in locomotor activity. Also, we performed a screen of the collection of mutants carrying random autosomal insertions of PdL transposon. We isolated five candidate genes, of which two genes, Dek and Hel89B, encode proteins related to the formation of the epigenetic code, implying that epigenetic factors regulating gene expression may be involved in social experience-dependent modification of locomotor behavior.

{"title":"Genetic Control of Social Experience-Dependent Changes in Locomotor Activity in Drosophila melanogaster Males","authors":"Julia V. Bragina,&nbsp;Anna A. Goncharova,&nbsp;Natalia G. Besedina,&nbsp;Larisa V. Danilenkova,&nbsp;Elena A. Kamysheva,&nbsp;Nikolai G. Kamyshev","doi":"10.1002/arch.70022","DOIUrl":"https://doi.org/10.1002/arch.70022","url":null,"abstract":"<div>\u0000 \u0000 <p>In animals, social experience plays an important role in the adaptive modification of behavior. Previous social experience changes locomotor activity in <i>Drosophila melanogaster</i>. In females, suppression of locomotion is observed only when flies are in aggregations, but males retain a reduced level of locomotor activity up to 5 days after being isolated from the group. The mechanisms underlying such behavioral plasticity still largely are unknown. In this study, we aimed to identify new candidate genes involved in the social experience-dependent modification of locomotor activity. We tested the effect of social experience on spontaneous locomotor activity in various mutant males, including those with impaired learning and memory, circadian rhythms, some biochemical pathways, and sensory systems. The results of the present study indicate that the biogenic amines and olfactory perception appear to play key roles in social experience-induced changes in locomotor activity. Also, we performed a screen of the collection of mutants carrying random autosomal insertions of <i>PdL</i> transposon. We isolated five candidate genes, of which two genes, <i>Dek</i> and <i>Hel89B</i>, encode proteins related to the formation of the epigenetic code, implying that epigenetic factors regulating gene expression may be involved in social experience-dependent modification of locomotor behavior.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Brown Planthopper, Nilaparvata lugens (Stål) Damage in Rice Using Hyperspectral Remote Sensing
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1002/arch.70024
Eere Vidya Madhuri, Rabi N. Sahoo, Selvaprakash Ramalingam, Subhash Chander, Sharan Paramimuthu, Rajna Salim

Remote sensing is being increasingly used in agricultural stress management, offering real-time analysis of crop stress beyond what can be observed visually alone. Hopper burn, induced by brown planthopper (BPH, Nilaparvata lugens) is a significant challenge to rice production in India. This study aims to characterize the spectral reflectance of rice plants with different infestation levels of 2nd instar BPH nymphs across three varieties namely Pusa Basamti-1509, Pusa Basmati-1121, and TN-1 (susceptible variety to BPH). The differential infestation included 0, 5, 10, 20, 40, 80, 100, 200 number of nymphs. The spectral signatures of the crop were collected at 20 and 40 days after infestation (DAI). The results indicated a distinct change in reflectance pattern between healthy and infested rice plants across all three varieties in green (490–559 nm), yellow (560–584 nm), orange (585–639 nm), and red (640–699 nm) region of visible portion as affected by chlorophyll pigments and in NIR region (700–1800 nm) as affected by cell structure and in water absorption (1915 nm) region of SWIR portion. The specific wavelength band (470, 660,750, 1800, 1915 nm) showing a correlation above 0.8 with pest severity level, was identified as sensitive for assessing BPH damage. Analysis of reflectance changes across wavelengths highlighted that the first derivative has a strong correlation between BPH severity and reflectance in the green region (500–540 nm) and red edge position (680–760 nm). The amplitude of the red edge value decreased with an increase in the severity level of insects. This study identifies the sensitivity of visible and near-infrared regions in detecting and assessing BPH infestation severity.

{"title":"Detecting Brown Planthopper, Nilaparvata lugens (Stål) Damage in Rice Using Hyperspectral Remote Sensing","authors":"Eere Vidya Madhuri,&nbsp;Rabi N. Sahoo,&nbsp;Selvaprakash Ramalingam,&nbsp;Subhash Chander,&nbsp;Sharan Paramimuthu,&nbsp;Rajna Salim","doi":"10.1002/arch.70024","DOIUrl":"https://doi.org/10.1002/arch.70024","url":null,"abstract":"<div>\u0000 \u0000 <p>Remote sensing is being increasingly used in agricultural stress management, offering real-time analysis of crop stress beyond what can be observed visually alone. Hopper burn, induced by brown planthopper (BPH, <i>Nilaparvata lugens</i>) is a significant challenge to rice production in India. This study aims to characterize the spectral reflectance of rice plants with different infestation levels of 2<sup>nd</sup> instar BPH nymphs across three varieties namely Pusa Basamti-1509, Pusa Basmati-1121, and TN-1 (susceptible variety to BPH). The differential infestation included 0, 5, 10, 20, 40, 80, 100, 200 number of nymphs. The spectral signatures of the crop were collected at 20 and 40 days after infestation (DAI). The results indicated a distinct change in reflectance pattern between healthy and infested rice plants across all three varieties in green (490–559 nm), yellow (560–584 nm), orange (585–639 nm), and red (640–699 nm) region of visible portion as affected by chlorophyll pigments and in NIR region (700–1800 nm) as affected by cell structure and in water absorption (1915 nm) region of SWIR portion. The specific wavelength band (470, 660,750, 1800, 1915 nm) showing a correlation above 0.8 with pest severity level, was identified as sensitive for assessing BPH damage. Analysis of reflectance changes across wavelengths highlighted that the first derivative has a strong correlation between BPH severity and reflectance in the green region (500–540 nm) and red edge position (680–760 nm). The amplitude of the red edge value decreased with an increase in the severity level of insects. This study identifies the sensitivity of visible and near-infrared regions in detecting and assessing BPH infestation severity.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microcystin-Lr-Induced Changes in Growth Performance, Intestinal Microbiota, and Lipid Metabolism of Black Soldier Fly Larvae (Hermetia illucens)
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1002/arch.70036
Peng Gu, Yi Ding, Wanqing Zhang, Kunlun Yang, Zengshuai Zhang, Xueli Ren, Hua Su, Hengfeng Miao

Biological treatment by black soldier fly larvae (BSFL) has proven to be an effective method for the resource utilization of cyanobacteria, but the effects of microcystin-LR (MC-LR) in cyanobacteria on BSFL growth have not been adequately explored. To evaluate the inhibitory effect and toxic mechanism of MC-LR on BSFL, the growth performance and intestinal microbiota were examined after exposure to 0, 10, 100, and 1000 μg/kg of MC-LR. The larval weight and survival rate were each significantly inhibited by 21.53% and 21.49% compared with the control group, respectively, after exposure at a concentration of 1000 μg/kg MC-LR for 16 days. Lipid accumulation, intestinal inflammation, and oxidative stress were observed in three treatment groups, with dose-dependent inflammation ocurring in the intestine. Compared with the control group, superoxide dismutase and catalase activity levels were significantly increased by 74.91% and 49.58%, respectively, which confirmed the occurrence of oxidative stress induced by MC-LR. Furthermore, MC-LR altered the diversity of intestinal microbiota and increased the relative abundance of pathogenic bacteria (e.g., Paenibacillus, Clostridium_sensu_stricto_1, and Lachnoclostridium), which increased the risk of disease in BSFL and contributed to observed metabolic disorders. On the other hand, qRT-PCR analysis further confirmed the occurrence of oxidative stress and the activation of the peroxisome proliferator-activated receptor signaling pathway, resulting in the upregulation of fatty acid synthesis-related genes, ultimately leading to lipid accumulation and apoptosis. These findings provide valuable insights into the ecological risks associated with MC-LR during the process of cyanobacterial resource utilization.

{"title":"Microcystin-Lr-Induced Changes in Growth Performance, Intestinal Microbiota, and Lipid Metabolism of Black Soldier Fly Larvae (Hermetia illucens)","authors":"Peng Gu,&nbsp;Yi Ding,&nbsp;Wanqing Zhang,&nbsp;Kunlun Yang,&nbsp;Zengshuai Zhang,&nbsp;Xueli Ren,&nbsp;Hua Su,&nbsp;Hengfeng Miao","doi":"10.1002/arch.70036","DOIUrl":"https://doi.org/10.1002/arch.70036","url":null,"abstract":"<div>\u0000 \u0000 <p>Biological treatment by black soldier fly larvae (BSFL) has proven to be an effective method for the resource utilization of cyanobacteria, but the effects of microcystin-LR (MC-LR) in cyanobacteria on BSFL growth have not been adequately explored. To evaluate the inhibitory effect and toxic mechanism of MC-LR on BSFL, the growth performance and intestinal microbiota were examined after exposure to 0, 10, 100, and 1000 μg/kg of MC-LR. The larval weight and survival rate were each significantly inhibited by 21.53% and 21.49% compared with the control group, respectively, after exposure at a concentration of 1000 μg/kg MC-LR for 16 days. Lipid accumulation, intestinal inflammation, and oxidative stress were observed in three treatment groups, with dose-dependent inflammation ocurring in the intestine. Compared with the control group, superoxide dismutase and catalase activity levels were significantly increased by 74.91% and 49.58%, respectively, which confirmed the occurrence of oxidative stress induced by MC-LR. Furthermore, MC-LR altered the diversity of intestinal microbiota and increased the relative abundance of pathogenic bacteria (e.g., <i>Paenibacillus</i>, <i>Clostridium_sensu_stricto_1</i>, and <i>Lachnoclostridium</i>), which increased the risk of disease in BSFL and contributed to observed metabolic disorders. On the other hand, qRT-PCR analysis further confirmed the occurrence of oxidative stress and the activation of the peroxisome proliferator-activated receptor signaling pathway, resulting in the upregulation of fatty acid synthesis-related genes, ultimately leading to lipid accumulation and apoptosis. These findings provide valuable insights into the ecological risks associated with MC-LR during the process of cyanobacterial resource utilization.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroantennogram and Behavioral Responses of Nematus Hequensis Xiao Adult to Volatiles of Salix alba Leaves
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1002/arch.70035
Zhenhao Song, Yiqu Chen, Xiao Dong, Zhaoxu Sun, Xinnan Guo, Kun Yu, Xiaoqin Tang, Jiancheng Zang

The aim of this study was to investigate how leaf volatiles from Salix alba affect the orientation of Nematus hequensis Xiao adults towards host plants and contribute to the development of plant-based attractants for N. hequensis. Solid-phase microextraction (SPME) coupled with gas chromatograph-mass spectrometry (GC-MS) was used to extract, identify, and screen leaf volatiles from S. alba aged 10–15 years during the peak eclosion of N. hequensis. Electroantennogram (EAG) and Y-shaped olfactometry assays were utilized to identify volatiles with relative content > 1% and determine the optimal concentration for attracting, 1-day-old unmated males and females. The results showed that among the 15 volatiles with a relative content of more than 1%, (E)-2-hexenal, benzaldehyde, and 2-hydroxybenzaldehyde elicited the strongest EAG response in adult males and females at a concentration of 100 μg·μL-1, with (E)-2-hexenal exhibiting a greater effect than 2-hydroxybenzaldehyde, which in turn was more effective than benzaldehyde. At this concentration, the attractive effects of (E)-2-Hexenal, and benzaldehyde on adult males and females were significant. These findings provide an important basis for developing attractants and repellents used in control of this insect pest.

{"title":"Electroantennogram and Behavioral Responses of Nematus Hequensis Xiao Adult to Volatiles of Salix alba Leaves","authors":"Zhenhao Song,&nbsp;Yiqu Chen,&nbsp;Xiao Dong,&nbsp;Zhaoxu Sun,&nbsp;Xinnan Guo,&nbsp;Kun Yu,&nbsp;Xiaoqin Tang,&nbsp;Jiancheng Zang","doi":"10.1002/arch.70035","DOIUrl":"https://doi.org/10.1002/arch.70035","url":null,"abstract":"<div>\u0000 \u0000 <p>The aim of this study was to investigate how leaf volatiles from <i>Salix alba</i> affect the orientation of <i>Nematus hequensis</i> Xiao adults towards host plants and contribute to the development of plant-based attractants for <i>N. hequensis</i>. Solid-phase microextraction (SPME) coupled with gas chromatograph-mass spectrometry (GC-MS) was used to extract, identify, and screen leaf volatiles from <i>S. alba</i> aged 10–15 years during the peak eclosion of <i>N. hequensis</i>. Electroantennogram (EAG) and Y-shaped olfactometry assays were utilized to identify volatiles with relative content &gt; 1% and determine the optimal concentration for attracting, 1-day-old unmated males and females. The results showed that among the 15 volatiles with a relative content of more than 1%, (E)-2-hexenal, benzaldehyde, and 2-hydroxybenzaldehyde elicited the strongest EAG response in adult males and females at a concentration of 100 μg·μL<sup>-1</sup>, with (E)-2-hexenal exhibiting a greater effect than 2-hydroxybenzaldehyde, which in turn was more effective than benzaldehyde. At this concentration, the attractive effects of (E)-2-Hexenal, and benzaldehyde on adult males and females were significant. These findings provide an important basis for developing attractants and repellents used in control of this insect pest.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1002/arch.70038
Yao Li, Jiannan Wu, Yi You, Meng Miao, Wei Yu

Heat shock protein 60 (Hsp60), abundantly presents in mitochondria, is a highly conserved chaperone that maintains the stability and functionality of mitochondrial proteins, while also participating in the regulation of various cellular processes. As a member of the heat shock family, Hsp60 significantly influences viral proliferation. However, limited research is available on its role in the proliferation of entomopathogenic baculoviruses, particularly Bombyx mori nucleopolyhedrovirus (BmNPV). Our previous proteomics results showed a significant decrease of Hsp60 acetylation levels after BmNPV infection. To investigate the impact of Hsp60 deacetylation on viral proliferation, site-direct mutagenesis was performed to generate a deacetylated (K/R) mimic of Hsp60. We found that the acetylation level of lysine 362 (K362) decreased after BmNPV challenge. Furthermore, overexpression of deacetylation-mimicking Hsp60 reduced the chaperone activity of Hsp60, leading to impaired mitochondrial function, including increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential, and reduced substrate protein Manganese-containing superoxide dismutase (Mn-SOD) activities, ultimately leading to inhibition of viral proliferation. This study establishes lysine 362 acetylation of Hsp60 as a model for Posttranslational modifications induced by host-virus interactions, providing new insights into potential antiviral strategies.

{"title":"Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori","authors":"Yao Li,&nbsp;Jiannan Wu,&nbsp;Yi You,&nbsp;Meng Miao,&nbsp;Wei Yu","doi":"10.1002/arch.70038","DOIUrl":"https://doi.org/10.1002/arch.70038","url":null,"abstract":"<div>\u0000 \u0000 <p>Heat shock protein 60 (Hsp60), abundantly presents in mitochondria, is a highly conserved chaperone that maintains the stability and functionality of mitochondrial proteins, while also participating in the regulation of various cellular processes. As a member of the heat shock family, Hsp60 significantly influences viral proliferation. However, limited research is available on its role in the proliferation of entomopathogenic baculoviruses, particularly <i>Bombyx mori</i> nucleopolyhedrovirus (BmNPV). Our previous proteomics results showed a significant decrease of Hsp60 acetylation levels after BmNPV infection. To investigate the impact of Hsp60 deacetylation on viral proliferation, site-direct mutagenesis was performed to generate a deacetylated (K/R) mimic of Hsp60. We found that the acetylation level of lysine 362 (K362) decreased after BmNPV challenge. Furthermore, overexpression of deacetylation-mimicking Hsp60 reduced the chaperone activity of Hsp60, leading to impaired mitochondrial function, including increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential, and reduced substrate protein Manganese-containing superoxide dismutase (Mn-SOD) activities, ultimately leading to inhibition of viral proliferation. This study establishes lysine 362 acetylation of Hsp60 as a model for Posttranslational modifications induced by host-virus interactions, providing new insights into potential antiviral strategies.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Insights Into Insect Physiology and Biochemistry
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-11 DOI: 10.1002/arch.70034
Umut Toprak
<p>Insect physiology and biochemistry are foundational to understanding the intricate biological processes that govern one of Earth's most diverse and ecologically important groups of organisms, “the insects.” Many insects act as plant pests, causing significant damage to crops and forests, which has profound economic and ecological implications. On the other hand, insects play critical roles in ecosystems as pollinators, decomposers, and prey and serve as vectors of diseases that impact human health and agriculture. Exploring their physiological mechanisms—from respiration and digestion to sensory perception and reproduction— provides valuable insights into their adaptability and survival strategies. Moreover, insect biochemistry offers a window into unique metabolic pathways, enzyme functions, and molecular interactions that often differ significantly from those of vertebrates. This knowledge not only enhances our understanding of biodiversity and evolution but also informs the development of innovative approaches in pest management, biotechnology, and even biomedical research. By delving into the complex interplay of physiology and biochemistry in insects, we can uncover strategies to address global challenges while appreciating the marvels of these remarkable organisms.</p><p>The idea for this special issue (SI) was developed at the “Second International Molecular Plant Protection Congress (IMPPC2023- https://www.imppc2023.org/)” that was organized in Bursa, Türkiye, on May 15-18, 2023, with the theme “Innovations in Plant Protection.” IMPPC2023 hosted 782 participants from 24 countries, while 79 keynote speakers delivered invited talks. 41 global and local agriculture and biotechnology companies presented their products in the exhibition hall. The congress was a great success, which encouraged us to compile this SI “Recent Insights into Insect Physiology and Biochemistry.”</p><p>The current SI includes 11 research articles. Both keynote speakers of the IMPPC2023 and several other experts were invited to contribute to this issue. The SI focused on the recent fundamental & molecular & biochemical insights into insect physiological systems' structure and operation. Toxicological studies, as well as studies on microbial control and insect pathology, were also welcomed. As the development of alternatives to chemical insecticides in pest management has been an attractive research topic, such novel insecticidal molecules and their impact on insect physiological systems were also included.</p><p>In conclusion, this SI has explored the dynamic and multifaceted field of insect physiology and biochemistry, showcasing cutting-edge research and its applications in pest management, agriculture, and beyond. From the interplay of host-pathogen interactions to the molecular characterization of digestive and reproductive systems, this SI highlights the importance of understanding fundamental biological processes to address various research questions i
{"title":"Recent Insights Into Insect Physiology and Biochemistry","authors":"Umut Toprak","doi":"10.1002/arch.70034","DOIUrl":"https://doi.org/10.1002/arch.70034","url":null,"abstract":"&lt;p&gt;Insect physiology and biochemistry are foundational to understanding the intricate biological processes that govern one of Earth's most diverse and ecologically important groups of organisms, “the insects.” Many insects act as plant pests, causing significant damage to crops and forests, which has profound economic and ecological implications. On the other hand, insects play critical roles in ecosystems as pollinators, decomposers, and prey and serve as vectors of diseases that impact human health and agriculture. Exploring their physiological mechanisms—from respiration and digestion to sensory perception and reproduction— provides valuable insights into their adaptability and survival strategies. Moreover, insect biochemistry offers a window into unique metabolic pathways, enzyme functions, and molecular interactions that often differ significantly from those of vertebrates. This knowledge not only enhances our understanding of biodiversity and evolution but also informs the development of innovative approaches in pest management, biotechnology, and even biomedical research. By delving into the complex interplay of physiology and biochemistry in insects, we can uncover strategies to address global challenges while appreciating the marvels of these remarkable organisms.&lt;/p&gt;&lt;p&gt;The idea for this special issue (SI) was developed at the “Second International Molecular Plant Protection Congress (IMPPC2023- https://www.imppc2023.org/)” that was organized in Bursa, Türkiye, on May 15-18, 2023, with the theme “Innovations in Plant Protection.” IMPPC2023 hosted 782 participants from 24 countries, while 79 keynote speakers delivered invited talks. 41 global and local agriculture and biotechnology companies presented their products in the exhibition hall. The congress was a great success, which encouraged us to compile this SI “Recent Insights into Insect Physiology and Biochemistry.”&lt;/p&gt;&lt;p&gt;The current SI includes 11 research articles. Both keynote speakers of the IMPPC2023 and several other experts were invited to contribute to this issue. The SI focused on the recent fundamental &amp; molecular &amp; biochemical insights into insect physiological systems' structure and operation. Toxicological studies, as well as studies on microbial control and insect pathology, were also welcomed. As the development of alternatives to chemical insecticides in pest management has been an attractive research topic, such novel insecticidal molecules and their impact on insect physiological systems were also included.&lt;/p&gt;&lt;p&gt;In conclusion, this SI has explored the dynamic and multifaceted field of insect physiology and biochemistry, showcasing cutting-edge research and its applications in pest management, agriculture, and beyond. From the interplay of host-pathogen interactions to the molecular characterization of digestive and reproductive systems, this SI highlights the importance of understanding fundamental biological processes to address various research questions i","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.70034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omics Data Integration of Rhynchophorus Ferrugineus Reveals High-Potential Targeted Pathways for the Development of Pest Control Management
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-10 DOI: 10.1002/arch.70039
Ahmad-Faris Seman-Kamarulzaman, Nor Azlan Nor Muhammad, Nurul Wahida Othman, Johari Jalinas, Nurul Izzaty Hassan, Nur Lina Rahmat, Maizom Hassan

Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Dryophthoridae), commonly known as the red palm weevil (RPW), is a globally significant pest that threatens economically important palm trees. Its cryptic infestation behavior leads to irreversible damage and eventual host plant death. Current control methods using broad-spectrum insecticides are largely ineffective due to resistance development and their adverse effects on nontarget organisms, necessitating novel strategies. This study integrates proteomics and transcriptomics data to explore the molecular landscape of RPW and identify pathways for targeted pest management. A total of 16,954 transcripts and 983 proteins were identified across three developmental stages (larvae, male adults, and female adults), with a notable decline in protein numbers from larvae to adult. Differential expression analysis revealed 7540 proteins varying significantly between developmental stages. Through subtractive analysis, 218 proteins meeting stringent inclusion and exclusion criteria were identified. These proteins underwent pathway enrichment analysis, mapping to 39 enriched pathways (p-value and an FDR of < 0.01). Among these, two pathways involving three key enzymes were highlighted as high-potential targets for developing insect-specific insecticides and diet-specific control strategies. This is the first comprehensive proteomics study analyzing the whole body of RPW across its developmental stages. The findings emphasize critical pathways, their enzyme components, and the regulation of these enzymes, offering novel insights for sustainable and targeted pest management solutions.

{"title":"Omics Data Integration of Rhynchophorus Ferrugineus Reveals High-Potential Targeted Pathways for the Development of Pest Control Management","authors":"Ahmad-Faris Seman-Kamarulzaman,&nbsp;Nor Azlan Nor Muhammad,&nbsp;Nurul Wahida Othman,&nbsp;Johari Jalinas,&nbsp;Nurul Izzaty Hassan,&nbsp;Nur Lina Rahmat,&nbsp;Maizom Hassan","doi":"10.1002/arch.70039","DOIUrl":"https://doi.org/10.1002/arch.70039","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Rhynchophorus ferrugineus</i> (Olivier, 1790) (Coleoptera: Dryophthoridae), commonly known as the red palm weevil (RPW), is a globally significant pest that threatens economically important palm trees. Its cryptic infestation behavior leads to irreversible damage and eventual host plant death. Current control methods using broad-spectrum insecticides are largely ineffective due to resistance development and their adverse effects on nontarget organisms, necessitating novel strategies. This study integrates proteomics and transcriptomics data to explore the molecular landscape of RPW and identify pathways for targeted pest management. A total of 16,954 transcripts and 983 proteins were identified across three developmental stages (larvae, male adults, and female adults), with a notable decline in protein numbers from larvae to adult. Differential expression analysis revealed 7540 proteins varying significantly between developmental stages. Through subtractive analysis, 218 proteins meeting stringent inclusion and exclusion criteria were identified. These proteins underwent pathway enrichment analysis, mapping to 39 enriched pathways (<i>p-value</i> and an FDR of &lt; 0.01). Among these, two pathways involving three key enzymes were highlighted as high-potential targets for developing insect-specific insecticides and diet-specific control strategies. This is the first comprehensive proteomics study analyzing the whole body of RPW across its developmental stages. The findings emphasize critical pathways, their enzyme components, and the regulation of these enzymes, offering novel insights for sustainable and targeted pest management solutions.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metarhizium anisopliae JEF-197 Loses Glucose Metabolism in Surviving Japanese Pine Sawyer Beetle Against the Fungal Pathogen
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-10 DOI: 10.1002/arch.70020
Gahyeon Song, Mi Rong Lee, Jong Cheol Kim, Jae Su Kim

Japanese pine sawyer beetle (JPSB), Monochamus alternatus is a forest insect pest with damaging to pine trees through vectoring plant-parasitic nematodes. In our previous work, the entomopathogenic Metarhizium anisopliae JEF-197 was effective in controlling JPSB adults. However some of JPSB adults survived well even against the fungal treatment. Now here in this work, we analyzed the transcriptome of JEF-197 from the fungus-treated JPSB adults which still survived in 8 days after the treatment. The day was determined based on the lethal time 50 (LT50) in our previous study. As a control, JEF-197 was cultured on 1/4SDA for 8 days. The plate-cultured JEF-197 transcripts were used for building-up an index in the abundance analysis using kallisto to investigate the gene regulation. Additionally, transcripts from the JEF-197-treated PSB were analyzed to find possible fungal transcripts to enlarge the index of abundance analysis. In the following differentially expressed gene (DEG) analysis, most JEF-197 transcripts showed significant down-regulations in JPSB adults 8 days after treatment, which were presented as clustering heatmap, PCA, MA and Volcano plots. The GO enrichment analysis showed similar results, in which most of pathways were significantly suppressed. Metabolic and biosynthesis metabolisms were most dominantly downregulated pathways. Particularly, many genes of glucose metabolisms were significantly suppressed, including genes for glycolysis, TCA, ATP & nucleotide synthesis, and glycogen & chitin production. This work suggests that JEF-197 lost its own glucose metabolism in the survived JPSB adults, and the survival could be involved in the active and continuous host defense mechanisms. It gives us questions what factors would be involved in the different response of individual to the fungal treatment and what happens if live and dead hosts were pooled in RNA-sequencing.

{"title":"Metarhizium anisopliae JEF-197 Loses Glucose Metabolism in Surviving Japanese Pine Sawyer Beetle Against the Fungal Pathogen","authors":"Gahyeon Song,&nbsp;Mi Rong Lee,&nbsp;Jong Cheol Kim,&nbsp;Jae Su Kim","doi":"10.1002/arch.70020","DOIUrl":"https://doi.org/10.1002/arch.70020","url":null,"abstract":"<div>\u0000 \u0000 <p>Japanese pine sawyer beetle (JPSB), <i>Monochamus alternatus</i> is a forest insect pest with damaging to pine trees through vectoring plant-parasitic nematodes. In our previous work, the entomopathogenic <i>Metarhizium anisopliae</i> JEF-197 was effective in controlling JPSB adults. However some of JPSB adults survived well even against the fungal treatment. Now here in this work, we analyzed the transcriptome of JEF-197 from the fungus-treated JPSB adults which still survived in 8 days after the treatment. The day was determined based on the lethal time 50 (LT<sub>50</sub>) in our previous study. As a control, JEF-197 was cultured on 1/4SDA for 8 days. The plate-cultured JEF-197 transcripts were used for building-up an index in the abundance analysis using kallisto to investigate the gene regulation. Additionally, transcripts from the JEF-197-treated PSB were analyzed to find possible fungal transcripts to enlarge the index of abundance analysis. In the following differentially expressed gene (DEG) analysis, most JEF-197 transcripts showed significant down-regulations in JPSB adults 8 days after treatment, which were presented as clustering heatmap, PCA, MA and Volcano plots. The GO enrichment analysis showed similar results, in which most of pathways were significantly suppressed. Metabolic and biosynthesis metabolisms were most dominantly downregulated pathways. Particularly, many genes of glucose metabolisms were significantly suppressed, including genes for glycolysis, TCA, ATP &amp; nucleotide synthesis, and glycogen &amp; chitin production. This work suggests that JEF-197 lost its own glucose metabolism in the survived JPSB adults, and the survival could be involved in the active and continuous host defense mechanisms. It gives us questions what factors would be involved in the different response of individual to the fungal treatment and what happens if live and dead hosts were pooled in RNA-sequencing.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens
IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-03 DOI: 10.1002/arch.70032
Prabin Dhungana, Xueyan Wei, David S. Kang, Cheolho Sim

The primary vector of the West Nile virus, Culex pipiens, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.

{"title":"A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens","authors":"Prabin Dhungana,&nbsp;Xueyan Wei,&nbsp;David S. Kang,&nbsp;Cheolho Sim","doi":"10.1002/arch.70032","DOIUrl":"10.1002/arch.70032","url":null,"abstract":"<div>\u0000 \u0000 <p>The primary vector of the West Nile virus, <i>Culex pipiens</i>, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Archives of Insect Biochemistry and Physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1