Chapter 3: The Origins and Evolution of Planetary Systems.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-03-01 DOI:10.1089/ast.2021.0127
Micah J Schaible, Zoe R Todd, Eryn M Cangi, Chester E Harman, Kynan H G Hughson, Kamil Stelmach
{"title":"Chapter 3: The Origins and Evolution of Planetary Systems.","authors":"Micah J Schaible, Zoe R Todd, Eryn M Cangi, Chester E Harman, Kynan H G Hughson, Kamil Stelmach","doi":"10.1089/ast.2021.0127","DOIUrl":null,"url":null,"abstract":"<p><p>The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S57-S75"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0127","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第 3 章:行星系统的起源与演化。
形成地球上各种化学物质和结构的物质--从山脉到海洋和生物有机体--都起源于以氢和氦为主的宇宙。经过数十亿年的演化,星系和恒星的组成和结构发生了变化,生命元素 "CHONPS "通过恒星核心的核合成形成。超新星和恒星碰撞等气候事件产生了更重的元素,并将它们扩散到整个宇宙,通常会融入新的、更富含金属的恒星中。恒星通常是在含有少量尘埃的分子云中通过高密度内核的坍缩形成的。然后,周围的星云物质被拉入原行星盘,行星、卫星、小行星和彗星最终从中吸积。在行星系统的吸积过程中,湍流混合会使物质暴露在各种不同的热环境和辐射环境中。行星系物质在吸积之前和整个吸积过程中都会发生化学和物理变化,尽管许多因素(如与恒星的距离、撞击历史和所经历的加热程度)共同决定了最终的地球物理特征。在地球的行星系(即太阳系)中,当行星的轨道稳定在目前的构造后,大型撞击变得罕见,天体的成分和相对位置也基本固定下来。行星各自的化学和物理环境--地圈、水圈和大气层--的进一步演化开始依赖于它们当地的地球化学、大气层与太阳辐射的相互作用以及较小的小行星撞击。在地球上,陆地、空气和水的存在,以及大量重要的地球物理和地球化学现象,造就了一个适合生命繁衍的宜居星球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. Radiation-Driven Destruction of Thiophene and Methyl-Substituted Thiophenes. Rapid Destruction of Lipid Biomarkers Under Simulated Cosmic Radiation. Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere. A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1