Chapter 5: Major Biological Innovations in the History of Life on Earth.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-03-01 DOI:10.1089/ast.2021.0119
G Ozan Bozdag, Nadia Szeinbaum, Peter L Conlin, Kimberly Chen, Santiago Mestre Fos, Amanda Garcia, Petar I Penev, George A Schaible, Gareth Trubl
{"title":"Chapter 5: Major Biological Innovations in the History of Life on Earth.","authors":"G Ozan Bozdag, Nadia Szeinbaum, Peter L Conlin, Kimberly Chen, Santiago Mestre Fos, Amanda Garcia, Petar I Penev, George A Schaible, Gareth Trubl","doi":"10.1089/ast.2021.0119","DOIUrl":null,"url":null,"abstract":"<p><p>All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第 5 章:地球生命史上的重大生物创新。
生活在地球上的所有生物都是从一个单一的、共同的细胞祖先群体(被称为 LUCA--最后的普遍共同祖先)演化而来的。自其出现以来,生命的多样性和复杂性急剧增加。本章重点介绍地球历史上对系统发育多样性、生物复杂性和生态空间居住的扩展产生重大影响的四项关键生物创新。首先是最后一个普遍共同祖先 LUCA 的出现,它奠定了地球上所有生命形式的基础。其次是含氧光合作用的进化,它导致了全球地球化学和生物转化。第三是一种新型细胞--真核细胞的出现,它导致了一个新的生命领域的起源,并为复杂的多细胞性奠定了基础。第四是多细胞性的多重独立起源,导致出现了新层次的复杂个体性。对这四个关键事件的讨论将增进我们对地球及其居民相互交织的历史的理解,并更好地告知我们在多大程度上可以期待其他地方出现不同程度的多样性和复杂性的生命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for Astrobiology. Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life. Timing and Likelihood of the Origin of Life Derived from Post-Impact Highly Reducing Atmospheres. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1