G Ozan Bozdag, Nadia Szeinbaum, Peter L Conlin, Kimberly Chen, Santiago Mestre Fos, Amanda Garcia, Petar I Penev, George A Schaible, Gareth Trubl
{"title":"Chapter 5: Major Biological Innovations in the History of Life on Earth.","authors":"G Ozan Bozdag, Nadia Szeinbaum, Peter L Conlin, Kimberly Chen, Santiago Mestre Fos, Amanda Garcia, Petar I Penev, George A Schaible, Gareth Trubl","doi":"10.1089/ast.2021.0119","DOIUrl":null,"url":null,"abstract":"<p><p>All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S107-S123"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming