Ariane V Zmozinski, Rafael S Peres, Alexandre José Macedo, Emilene Mendes Becker, Amanda Pasinato Napp, Rafael Schneider, Jade Reisdörfer Silveira, Carlos Arthur Ferreira, Marilene H Vainstein, Augusto Schrank
{"title":"Silicone-geranium essential oil blend for long-term antifouling coatings.","authors":"Ariane V Zmozinski, Rafael S Peres, Alexandre José Macedo, Emilene Mendes Becker, Amanda Pasinato Napp, Rafael Schneider, Jade Reisdörfer Silveira, Carlos Arthur Ferreira, Marilene H Vainstein, Augusto Schrank","doi":"10.1080/08927014.2024.2328611","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by <sup>13</sup>Carbon nuclear magnetic resonance (<sup>13</sup>C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with <i>Psychrobacter adeliensis</i> and <i>Shewanella algidipiscicola</i> being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of <i>Psychrobacter adeliensis</i> biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2328611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.