Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine-learning approaches.

IF 3.7 Q2 INFECTIOUS DISEASES JAC-Antimicrobial Resistance Pub Date : 2024-03-18 eCollection Date: 2024-04-01 DOI:10.1093/jacamr/dlae037
Joshua J Carter, Timothy M Walker, A Sarah Walker, Michael G Whitfield, Glenn P Morlock, Charlotte I Lynch, Dylan Adlard, Timothy E A Peto, James E Posey, Derrick W Crook, Philip W Fowler
{"title":"Prediction of pyrazinamide resistance in <i>Mycobacterium tuberculosis</i> using structure-based machine-learning approaches.","authors":"Joshua J Carter, Timothy M Walker, A Sarah Walker, Michael G Whitfield, Glenn P Morlock, Charlotte I Lynch, Dylan Adlard, Timothy E A Peto, James E Posey, Derrick W Crook, Philip W Fowler","doi":"10.1093/jacamr/dlae037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in <i>pncA</i>, encoding an enzyme that converts pyrazinamide into its active form.</p><p><strong>Methods: </strong>We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features.</p><p><strong>Results: </strong>The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in <i>pncA</i> derived from 24 231 clinical isolates.</p><p><strong>Conclusions: </strong>This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.</p>","PeriodicalId":14594,"journal":{"name":"JAC-Antimicrobial Resistance","volume":"6 2","pages":"dlae037"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAC-Antimicrobial Resistance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jacamr/dlae037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form.

Methods: We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features.

Results: The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in pncA derived from 24 231 clinical isolates.

Conclusions: This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于结构的机器学习方法预测结核分枝杆菌的吡嗪酰胺抗药性。
背景:吡嗪酰胺是用于治疗肺结核的四种一线抗生素之一;然而,吡嗪酰胺的抗生素药敏试验具有挑战性。对吡嗪酰胺的耐药性主要是由 pncA 的遗传变异驱动的,pncA 编码一种将吡嗪酰胺转化为其活性形式的酶:我们从已发表的研究中收集了 664 个 PncA 中的非冗余错义氨基酸突变数据集以及相关的高置信度表型,然后训练了三种不同的机器学习模型来预测吡嗪酰胺的耐药性。所有模型都能获得一系列基于蛋白质结构、化学和序列的特征:结果:最佳模型是梯度提升决策树,其灵敏度为 80.2%,特异性为 76.9%。然后,通过预测来自 24 231 个临床分离样本的 4027 个携带 367 个 pncA 独特错义突变的样本的二元吡嗪酰胺耐药表型,对模型的临床性能进行了评估:这项工作展示了机器学习如何在基于遗传学的临床微生物学工作流程中提高吡嗪酰胺耐药性预测的灵敏度/特异性,突出了未来生化研究的新型突变,并证明了在其他药物中使用这种方法的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Investigation of cefiderocol resistance prevalence and resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa, Germany 2019-21. Medical school ranking and provider outpatient Medicare Part D claims for antibiotics among older patients in the USA. Nursing home nurses' opinion profiles on the potential evolution of their role in antimicrobial stewardship and associated factors: a national cross-sectional study in France. Clinical pharmacist-led antifungal drug utilization reviews in cancer care hospital: a prospective audit and feedback. State of the art of real-life concentration monitoring of rifampicin and its implementation contextualized in resource-limited settings: the Tanzanian case.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1