Christopher W Roy, Bastien Milani, Jérôme Yerly, Salim Si-Mohamed, Ludovica Romanin, Aurélien Bustin, Estelle Tenisch, Tobias Rutz, Milan Prsa, Matthias Stuber
{"title":"Intra-bin correction and inter-bin compensation of respiratory motion in free-running five-dimensional whole-heart magnetic resonance imaging.","authors":"Christopher W Roy, Bastien Milani, Jérôme Yerly, Salim Si-Mohamed, Ludovica Romanin, Aurélien Bustin, Estelle Tenisch, Tobias Rutz, Milan Prsa, Matthias Stuber","doi":"10.1016/j.jocmr.2024.101037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR.</p><p><strong>Methods: </strong>Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers.</p><p><strong>Results: </strong>Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52).</p><p><strong>Conclusion: </strong>The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR.
Methods: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers.
Results: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52).
Conclusion: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.