Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2023-11-28 DOI:10.1109/TMBMC.2023.3336322
Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo
{"title":"Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell","authors":"Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo","doi":"10.1109/TMBMC.2023.3336322","DOIUrl":null,"url":null,"abstract":"Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10330635","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10330635/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 EV 交换进行细胞间化学交流:评估接收细胞的电动汽车融合过程参数
细胞之间利用各种化学信号进行交流。其中,细胞外囊泡(EVs)引起了科学界的极大兴趣。事实上,得益于生物纳米技术的进步以及对 EVs 进行工程化的可能性,EVs 被认为是在接收细胞间传播生物信息的完美手段。然而,破译调控 EV 货物递送的分子机制是当今利用 EV 信号支持创新和高效治疗方案、替代当前药物递送技术的一个必要但极具挑战性的步骤。特别是,目前有关 EV 融合过程的信息非常少,而 EV 融合是指 EV 膜溶解到靶细胞的质膜上,EV 内容释放到细胞质中的 EV 内化过程。为了了解这一过程的动态,本文介绍了融合过程演变的分析模型。此外,由于对驱动融合过程的生物参数的测量远未实现,我们在本文中将该模型作为一种工具,从现有技术可测量的参数中推断出这些参数的可能值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1