首页 > 最新文献

IEEE Transactions on Molecular, Biological, and Multi-Scale Communications最新文献

英文 中文
IEEE Communications Society Information IEEE 通信学会信息
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-25 DOI: 10.1109/TMBMC.2024.3458329
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2024.3458329","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458329","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments 客座编辑特稿:透过人群看世界:拥挤和多细胞环境中的分子通讯
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-25 DOI: 10.1109/TMBMC.2024.3463128
Adam Noel;Andrew W. Eckford;Radek Erban;Matteo Icardi;Gregory Reeves
{"title":"Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments","authors":"Adam Noel;Andrew W. Eckford;Radek Erban;Matteo Icardi;Gregory Reeves","doi":"10.1109/TMBMC.2024.3463128","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3463128","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"422-424"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications 第 8 届分子通讯研讨会特辑特邀编辑导言
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-25 DOI: 10.1109/TMBMC.2024.3458670
Chun Tung Chou;Mohammad Zoofaghari;Ozgur B. Akan;Mladen Veletic;Ilangko Balasingham
{"title":"Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications","authors":"Chun Tung Chou;Mohammad Zoofaghari;Ozgur B. Akan;Mladen Veletic;Ilangko Balasingham","doi":"10.1109/TMBMC.2024.3458670","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458670","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"455-457"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information 电气和电子工程师学会《分子、生物和多尺度通信论文集》(IEEE Transactions on Molecular, Biological, and Multi-Scale Communications)出版信息
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-25 DOI: 10.1109/TMBMC.2024.3458333
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2024.3458333","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458333","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"C2-C2"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Method of Fictitious Negative Sources to Model Diffusive Channels With Absorbing Boundaries 用虚构负源法模拟有吸收边界的扩散通道
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-02 DOI: 10.1109/TMBMC.2024.3453808
Fardad Vakilipoor;Abdulhamid N. M. Ansari;Luca Barletta;Gian Guido Gentili;Maurizio Magarini
This paper presents an approach to address the diffusion equation in scenarios involving multiple absorbing boundary conditions, commonly found in diffusive molecular communication (MC) channels. Instead of using multiple mirror images of the source, fictitious sources with time-varying release rates are introduced to replace the boundaries. This transformation enables the calculation of the expected cumulative number of absorbed particles (CNAP) by multiple absorbing boundaries with finite volume. To compute the expected CNAP, the concept of barycenter, which represents the spatial mean of particles the receiver absorbs is introduced. Substituting absorbing objects with their barycenters leads to model the CNAP in scenarios with convex geometry of absorbers. In a one-dimensional (1D) space, the proposed approach yields the same expression as the method of images for describing the expected CNAP by an absorber. However, in three-dimensional (3D) space, where using the method of images is challenging or even impossible, the proposed approach enables substituting the objects with fictitious sources and compute the expected CNAP. In 1D, an extension of this approach to the case in which one boundary exhibits an absorption characteristic while the other has zero-flux characteristic is demonstrated. This research direction is valuable for modeling channels where not all objects are particle receptors.
本文提出了一种在涉及多个吸收边界条件的情况下处理扩散方程的方法,这种情况通常出现在扩散分子通讯(MC)通道中。该方法不使用多个源的镜像,而是引入具有时变释放率的虚构源来替代边界。通过这种转换,可以计算出具有有限体积的多个吸收边界的预期累积吸收粒子数(CNAP)。为了计算预期累积吸收粒子数,引入了 "原心 "的概念,它代表了接收器吸收粒子的空间平均值。用吸收物体的原心代替吸收物体,就能在吸收体具有凸几何形状的情况下建立 CNAP 模型。在一维(1D)空间中,所提出的方法与图像法描述吸收体预期 CNAP 的表达式相同。然而,在三维(3D)空间中,使用图像方法具有挑战性,甚至是不可能的,而所提出的方法可以用虚构源代替物体,并计算预期的 CNAP。在一维空间中,这种方法扩展到了一个边界显示吸收特性而另一个边界显示零流量特性的情况。这一研究方向对于模拟并非所有物体都是粒子受体的通道非常有价值。
{"title":"The Method of Fictitious Negative Sources to Model Diffusive Channels With Absorbing Boundaries","authors":"Fardad Vakilipoor;Abdulhamid N. M. Ansari;Luca Barletta;Gian Guido Gentili;Maurizio Magarini","doi":"10.1109/TMBMC.2024.3453808","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3453808","url":null,"abstract":"This paper presents an approach to address the diffusion equation in scenarios involving multiple absorbing boundary conditions, commonly found in diffusive molecular communication (MC) channels. Instead of using multiple mirror images of the source, fictitious sources with time-varying release rates are introduced to replace the boundaries. This transformation enables the calculation of the expected cumulative number of absorbed particles (CNAP) by multiple absorbing boundaries with finite volume. To compute the expected CNAP, the concept of barycenter, which represents the spatial mean of particles the receiver absorbs is introduced. Substituting absorbing objects with their barycenters leads to model the CNAP in scenarios with convex geometry of absorbers. In a one-dimensional (1D) space, the proposed approach yields the same expression as the method of images for describing the expected CNAP by an absorber. However, in three-dimensional (3D) space, where using the method of images is challenging or even impossible, the proposed approach enables substituting the objects with fictitious sources and compute the expected CNAP. In 1D, an extension of this approach to the case in which one boundary exhibits an absorption characteristic while the other has zero-flux characteristic is demonstrated. This research direction is valuable for modeling channels where not all objects are particle receptors.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"442-454"},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Half-Space Modeling With Reflecting Surface in Molecular Communication 分子通信中带有反射面的半空间模型
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/TMBMC.2024.3448353
Anil Kamber;H. Birkan Yilmaz;Ali E. Pusane;Tuna Tugcu
In molecular communication via diffusion (MCvD), messenger molecules are emitted by a transmitter and propagate randomly through the fluidic environment. In biological systems, the environment can be considered a bounded space, surrounded by various structures such as tissues and organs. The propagation of molecules is affected by these structures, which reflect the molecules upon collision. Deriving the channel response of MCvD systems with an absorbing spherical receiver requires solving the 3-D diffusion equation in the presence of reflecting and absorbing boundary conditions, which is extremely challenging. In this paper, the method of images is brought to molecular communication (MC) realm to find a closed-form solution to the channel response of a single-input single-output (SISO) system near an infinite reflecting surface. It is shown that a molecular SISO system in a 3-D half-space with an infinite reflecting surface could be approximated as a molecular single-input multiple-output (SIMO) system in a 3-D space, which consists of two symmetrically located, with respect to the reflecting surface, identical absorbing spherical receivers.
在通过扩散进行的分子通讯(MCvD)中,信使分子由发射器发射,并在流体环境中随机传播。在生物系统中,环境可被视为一个有边界的空间,周围环绕着各种结构,如组织和器官。分子的传播会受到这些结构的影响,这些结构会在碰撞时反射分子。要推导具有吸收球形接收器的 MCvD 系统的通道响应,需要在存在反射和吸收边界条件的情况下求解三维扩散方程,这极具挑战性。本文将图像方法引入分子通信(MC)领域,为无限反射面附近的单输入单输出(SISO)系统的信道响应寻找闭式解。研究表明,在具有无限反射面的三维半空间中的分子 SISO 系统可以近似为三维空间中的分子单输入多输出(SIMO)系统,该系统由两个相对于反射面对称的相同吸收球形接收器组成。
{"title":"Half-Space Modeling With Reflecting Surface in Molecular Communication","authors":"Anil Kamber;H. Birkan Yilmaz;Ali E. Pusane;Tuna Tugcu","doi":"10.1109/TMBMC.2024.3448353","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3448353","url":null,"abstract":"In molecular communication via diffusion (MCvD), messenger molecules are emitted by a transmitter and propagate randomly through the fluidic environment. In biological systems, the environment can be considered a bounded space, surrounded by various structures such as tissues and organs. The propagation of molecules is affected by these structures, which reflect the molecules upon collision. Deriving the channel response of MCvD systems with an absorbing spherical receiver requires solving the 3-D diffusion equation in the presence of reflecting and absorbing boundary conditions, which is extremely challenging. In this paper, the method of images is brought to molecular communication (MC) realm to find a closed-form solution to the channel response of a single-input single-output (SISO) system near an infinite reflecting surface. It is shown that a molecular SISO system in a 3-D half-space with an infinite reflecting surface could be approximated as a molecular single-input multiple-output (SIMO) system in a 3-D space, which consists of two symmetrically located, with respect to the reflecting surface, identical absorbing spherical receivers.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"433-441"},"PeriodicalIF":2.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Different Chemical Realizations for Molecular Matrix Multiplications 分子矩阵乘法的不同化学实现方式研究
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-01 DOI: 10.1109/TMBMC.2024.3436905
Stefan Angerbauer;Nunzio Tuccitto;Giuseppe Trusso Sfrazzetto;Rossella Santonocito;Werner Haselmayr
Intelligent nano-machines are a promising candidate technology for the next generation of health care. The realization of such units relies on novel, unconventional approaches, to navigate the challenges of this particular domain. In this work, we present three chemical processes, that can be used to realize a recently proposed molecular matrix multiplication unit on the lab-scale. The matrix multiplication is the fundamental operation for the realization of neural networks and, therefore, artificial intelligence. Hence, this work presents an important step towards practical realization of intelligent nano-machines for the next generation of health care.
智能纳米机器是下一代医疗保健领域一项前景广阔的候选技术。要实现这种装置,需要采用新颖、非常规的方法,以应对这一特定领域的挑战。在这项工作中,我们介绍了三种化学过程,可用于在实验室规模上实现最近提出的分子矩阵乘法单元。矩阵乘法是实现神经网络和人工智能的基本操作。因此,这项工作是为下一代医疗保健实际实现智能纳米机器迈出的重要一步。
{"title":"Investigation of Different Chemical Realizations for Molecular Matrix Multiplications","authors":"Stefan Angerbauer;Nunzio Tuccitto;Giuseppe Trusso Sfrazzetto;Rossella Santonocito;Werner Haselmayr","doi":"10.1109/TMBMC.2024.3436905","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3436905","url":null,"abstract":"Intelligent nano-machines are a promising candidate technology for the next generation of health care. The realization of such units relies on novel, unconventional approaches, to navigate the challenges of this particular domain. In this work, we present three chemical processes, that can be used to realize a recently proposed molecular matrix multiplication unit on the lab-scale. The matrix multiplication is the fundamental operation for the realization of neural networks and, therefore, artificial intelligence. Hence, this work presents an important step towards practical realization of intelligent nano-machines for the next generation of health care.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"464-469"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age of Information-Based Abnormality Detection With Decay in the Human Circulatory System 人体循环系统中基于信息的异常检测衰减时代
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-11 DOI: 10.1109/TMBMC.2024.3426951
Saswati Pal;Jorge Torres Gómez;Regine Wendt;Stefan Fischer;Falko Dressler
Detecting abnormalities early by deploying a network of mobile nanosensors within the human body remains a challenging task. Current methods for abnormality detection rely on placing gateways at arbitrary locations. Given the critical importance of timely monitoring and detection in severe infections, relying on arbitrary gateway locations introduces delays in detection. In this work, we conducted an analysis of the impact of gateway placement and infection locations on detection time, detection ratio, and the average Peak Age of Information (PAoI). Furthermore, we also added decay of nanosensors similar to operation in the human body. We investigated its implications on both the detection ratio of abnormalities and the average PAoI. We employed a Monte Carlo simulation involving 1000 nanosensors circulating in the HCS for 500 seconds. The results revealed that the favorable gateway position is at the heart, minimizing detection time and enhancing the detection ratio for various infection locations. Furthermore, we observed that the detection ratio exhibited reduced variance with increased decay rates in nanosensors. Analyzing the PAoI across varying decay rates highlighted the importance of nanosensor quantity in relation to decay rate in ensuring accurate and timely infection localization.
通过在人体内部署移动纳米传感器网络来及早检测异常仍然是一项具有挑战性的任务。目前的异常检测方法依赖于在任意位置放置网关。鉴于在严重感染情况下及时监测和检测至关重要,依赖任意网关位置会导致检测延迟。在这项工作中,我们分析了网关位置和感染位置对检测时间、检测率和平均峰值信息年龄(PAoI)的影响。此外,我们还增加了纳米传感器的衰减,类似于在人体中的操作。我们研究了其对异常检测率和平均 PAoI 的影响。我们采用蒙特卡洛模拟,让 1000 个纳米传感器在 HCS 中循环 500 秒。结果表明,有利的网关位置是心脏,可最大限度地缩短检测时间,并提高不同感染位置的检测率。此外,我们还观察到,随着纳米传感器衰减率的增加,检测率的方差也在减小。分析不同衰减率下的 PAoI 突出了纳米传感器数量与衰减率的关系对确保准确及时的感染定位的重要性。
{"title":"Age of Information-Based Abnormality Detection With Decay in the Human Circulatory System","authors":"Saswati Pal;Jorge Torres Gómez;Regine Wendt;Stefan Fischer;Falko Dressler","doi":"10.1109/TMBMC.2024.3426951","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3426951","url":null,"abstract":"Detecting abnormalities early by deploying a network of mobile nanosensors within the human body remains a challenging task. Current methods for abnormality detection rely on placing gateways at arbitrary locations. Given the critical importance of timely monitoring and detection in severe infections, relying on arbitrary gateway locations introduces delays in detection. In this work, we conducted an analysis of the impact of gateway placement and infection locations on detection time, detection ratio, and the average Peak Age of Information (PAoI). Furthermore, we also added decay of nanosensors similar to operation in the human body. We investigated its implications on both the detection ratio of abnormalities and the average PAoI. We employed a Monte Carlo simulation involving 1000 nanosensors circulating in the HCS for 500 seconds. The results revealed that the favorable gateway position is at the heart, minimizing detection time and enhancing the detection ratio for various infection locations. Furthermore, we observed that the detection ratio exhibited reduced variance with increased decay rates in nanosensors. Analyzing the PAoI across varying decay rates highlighted the importance of nanosensor quantity in relation to decay rate in ensuring accurate and timely infection localization.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"487-492"},"PeriodicalIF":2.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BioComm: Biocompatible Physical Layer Design for Wireless Intra-Body Communications BioComm:用于体内无线通信的生物兼容物理层设计
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-04 DOI: 10.1109/TMBMC.2024.3423021
Pedram Johari;Hadeel Elayan;Josep M. Jornet
In-vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprecedented sensing capabilities that operate inside the human body in real-time. The current state-of-the-art in nanoelectronics and nanophotonics points to the Terahertz (THz) band (0.1–10 THz) and the optical frequency bands (infrared, 30–400 THz, and visible, 400–750 THz) as the promising spectral bands for nanosensor communications. In this paper, we propose and analyze a biocompatible modulation technique for iWNSNs. A mathematical framework is formulated to optimize the parameters of an adaptive Time Spread On-Off Keying (OOK) pulse-based modulation. This optimization considers both the physics of the intra-body optical channel and the light-matter interactions, along with the resulting photo-thermal effects in biological tissues. The outcomes of the analytical optimization model are validated through extensive numerical simulations. The results highlight a trade-off between link efficiency and the biocompatibility of the transmitted signals. Numerical analysis shows that the proposed biocompatible modulation technique can easily achieve a Bit Error Rate (BER) of $10^{-2}$ before coding, within the bio-safety measures, indicating a reliable intra-body channel for data transmission. This means that the channel can effectively convey information, such as health monitoring data or control signals for medical devices, without significant data loss or corruption.
体内无线纳米传感器网络(iWNSN)由纳米级通信设备组成,具有前所未有的传感能力,可在人体内实时运行。目前纳米电子学和纳米光子学的最新技术表明,太赫兹(THz)频段(0.1-10 THz)和光学频段(红外线,30-400 THz;可见光,400-750 THz)是纳米传感器通信的理想频段。本文提出并分析了 iWNSN 的生物兼容调制技术。本文提出了一个数学框架,用于优化基于脉冲的自适应时展开关键控(OOK)调制参数。这种优化既考虑了体内光通道和光-物质相互作用的物理学原理,又考虑了生物组织中产生的光热效应。大量的数值模拟验证了分析优化模型的结果。结果凸显了链路效率和传输信号的生物兼容性之间的权衡。数值分析表明,所提出的生物兼容调制技术在编码前可轻松达到 10^{-2}$ 的误码率(BER),且不超出生物安全措施的范围,表明这是一种可靠的体内数据传输信道。这意味着该信道可以有效地传输健康监测数据或医疗设备控制信号等信息,而不会出现严重的数据丢失或损坏。
{"title":"BioComm: Biocompatible Physical Layer Design for Wireless Intra-Body Communications","authors":"Pedram Johari;Hadeel Elayan;Josep M. Jornet","doi":"10.1109/TMBMC.2024.3423021","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3423021","url":null,"abstract":"In-vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprecedented sensing capabilities that operate inside the human body in real-time. The current state-of-the-art in nanoelectronics and nanophotonics points to the Terahertz (THz) band (0.1–10 THz) and the optical frequency bands (infrared, 30–400 THz, and visible, 400–750 THz) as the promising spectral bands for nanosensor communications. In this paper, we propose and analyze a biocompatible modulation technique for iWNSNs. A mathematical framework is formulated to optimize the parameters of an adaptive Time Spread On-Off Keying (OOK) pulse-based modulation. This optimization considers both the physics of the intra-body optical channel and the light-matter interactions, along with the resulting photo-thermal effects in biological tissues. The outcomes of the analytical optimization model are validated through extensive numerical simulations. The results highlight a trade-off between link efficiency and the biocompatibility of the transmitted signals. Numerical analysis shows that the proposed biocompatible modulation technique can easily achieve a Bit Error Rate (BER) of \u0000<inline-formula> <tex-math>$10^{-2}$ </tex-math></inline-formula>\u0000 before coding, within the bio-safety measures, indicating a reliable intra-body channel for data transmission. This means that the channel can effectively convey information, such as health monitoring data or control signals for medical devices, without significant data loss or corruption.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"383-395"},"PeriodicalIF":2.4,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Molecular Communication Perspective on Detecting Arterial Plaque Formation 检测动脉斑块形成的分子通讯视角
IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-04 DOI: 10.1109/TMBMC.2024.3423005
Pit Hofmann;Sebastian Schmidt;Alexander Wietfeld;Pengjie Zhou;Jonas Fuchtmann;Frank H. P. Fitzek;Wolfgang Kellerer
The formation of plaques in human blood vessels, known as atherosclerosis, represents one of the major causes of death worldwide. Synthetic molecular communication (MC), in combination with nanotechnology, is envisioned to enable novel approaches toward diagnosing, monitoring, and treating diseases. In this paper, we propose an investigation of the effects of plaque formation on the human blood vessel as an MC channel. By characterizing these changes, the early detection of plaques using MC networks in the human circulatory system could become possible. We model a simplified blood flow scenario in a human carotid artery using OpenFOAM. Nanoparticles are released in the bloodstream in front of a region obstructed by a plaque, and their transport and distribution are evaluated as they pass through. The results are obtained for different plaque sizes and channel lengths. We observe a significant impact of a growing plaque on the channel characteristics in terms of a reduced propagation delay and a decrease in the cumulative number of received particles due to particles trapped by the plaque. Therefore, the receiver could detect abnormalities from a change in these channel conditions over time. Further investigation of these methods in conjunction with more realistic modeling of the channel and communication nodes will be necessary to confirm the results. It could contribute towards advanced future methods of diagnosis.
人体血管中形成的斑块被称为动脉粥样硬化,是导致全球死亡的主要原因之一。合成分子通讯(MC)与纳米技术的结合被认为是诊断、监测和治疗疾病的新方法。在本文中,我们提出将斑块形成对人体血管的影响作为 MC 通道进行研究。通过确定这些变化的特征,利用 MC 网络对人体循环系统中的斑块进行早期检测将成为可能。我们使用 OpenFOAM 对人体颈动脉中的简化血流情景进行建模。纳米粒子被释放到斑块阻塞区域前的血流中,并在通过时对其传输和分布进行评估。结果是针对不同斑块大小和通道长度得出的。我们观察到,不断增大的斑块对信道特性有很大影响,表现为传播延迟缩短,以及由于斑块阻挡颗粒而导致接收颗粒的累积数量减少。因此,接收器可以从这些信道条件随时间的变化中检测到异常。有必要结合更现实的信道和通信节点建模对这些方法进行进一步研究,以确认结果。这将有助于开发未来先进的诊断方法。
{"title":"A Molecular Communication Perspective on Detecting Arterial Plaque Formation","authors":"Pit Hofmann;Sebastian Schmidt;Alexander Wietfeld;Pengjie Zhou;Jonas Fuchtmann;Frank H. P. Fitzek;Wolfgang Kellerer","doi":"10.1109/TMBMC.2024.3423005","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3423005","url":null,"abstract":"The formation of plaques in human blood vessels, known as atherosclerosis, represents one of the major causes of death worldwide. Synthetic molecular communication (MC), in combination with nanotechnology, is envisioned to enable novel approaches toward diagnosing, monitoring, and treating diseases. In this paper, we propose an investigation of the effects of plaque formation on the human blood vessel as an MC channel. By characterizing these changes, the early detection of plaques using MC networks in the human circulatory system could become possible. We model a simplified blood flow scenario in a human carotid artery using OpenFOAM. Nanoparticles are released in the bloodstream in front of a region obstructed by a plaque, and their transport and distribution are evaluated as they pass through. The results are obtained for different plaque sizes and channel lengths. We observe a significant impact of a growing plaque on the channel characteristics in terms of a reduced propagation delay and a decrease in the cumulative number of received particles due to particles trapped by the plaque. Therefore, the receiver could detect abnormalities from a change in these channel conditions over time. Further investigation of these methods in conjunction with more realistic modeling of the channel and communication nodes will be necessary to confirm the results. It could contribute towards advanced future methods of diagnosis.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"458-463"},"PeriodicalIF":2.4,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586804","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1