Pub Date : 2025-01-01DOI: 10.1109/TMBMC.2024.3523930
{"title":"2024 Index IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Vol. 10","authors":"","doi":"10.1109/TMBMC.2024.3523930","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3523930","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"642-654"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10819970","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1109/TMBMC.2024.3507633
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2024.3507633","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3507633","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10805221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1109/TMBMC.2024.3509092
Harun Šiljak
{"title":"Guest Editorial Special Feature on Quantum Biology: Series II","authors":"Harun Šiljak","doi":"10.1109/TMBMC.2024.3509092","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3509092","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"602-603"},"PeriodicalIF":2.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10805228","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1109/TMBMC.2024.3475159
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2024.3475159","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3475159","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"C2-C2"},"PeriodicalIF":2.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10805217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1109/TMBMC.2024.3476192
Nabiul Islam;Saswati Pal;Sudip Misra
Bacterial networks-based novel healthcare applications integrated with the Internet of Bio-Nano Things (IoBNT) have been on the rise, particularly due to their high efficacy in delivering drugs at targeted sites. Nevertheless, these networks are vulnerable to various cyber security risks such as unauthorized access, data tampering, and malicious attacks from internal and external intruders. By leveraging the property of quantum entanglement, we propose a security protocol, QBaN, to detect and thwart security breaches posed by intruders and securely send the information to the intended receiver. We use the von Neumann entropy metric to detect changes in the entangled quantum states. We evaluate the QBaN’s capability of detecting eavesdropping events by varying threshold values. Simulation results demonstrate the protocol’s efficacy in intrusion detection with an AUC of 0.78 on the ROC curve. The energy consumption for quantum entanglement is approximately 66.82% and 98.86% less than that for the bacterial propagation and DNA replication, respectively.
{"title":"QBaN: Quantum Bacterial Nanonetworks for Secure Molecular Communication","authors":"Nabiul Islam;Saswati Pal;Sudip Misra","doi":"10.1109/TMBMC.2024.3476192","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3476192","url":null,"abstract":"Bacterial networks-based novel healthcare applications integrated with the Internet of Bio-Nano Things (IoBNT) have been on the rise, particularly due to their high efficacy in delivering drugs at targeted sites. Nevertheless, these networks are vulnerable to various cyber security risks such as unauthorized access, data tampering, and malicious attacks from internal and external intruders. By leveraging the property of quantum entanglement, we propose a security protocol, QBaN, to detect and thwart security breaches posed by intruders and securely send the information to the intended receiver. We use the von Neumann entropy metric to detect changes in the entangled quantum states. We evaluate the QBaN’s capability of detecting eavesdropping events by varying threshold values. Simulation results demonstrate the protocol’s efficacy in intrusion detection with an AUC of 0.78 on the ROC curve. The energy consumption for quantum entanglement is approximately 66.82% and 98.86% less than that for the bacterial propagation and DNA replication, respectively.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"633-641"},"PeriodicalIF":2.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1109/TMBMC.2024.3471189
Phuong-Nam Nguyen
Quantum biology, at the intersection of quantum mechanics and biology, investigates the involvement of quantum phenomena in biological processes. A pivotal focus is quantum tunneling, wherein particles traverse energy barriers, a phenomenon with potential significance in various biological contexts. This article introduces a new class of linear potential functions for studying quantum tunneling in biological processes. The simplicity of linear potentials enables analytical solutions to the Schrödinger equation, offering efficiency compared to more complex numerical methods. The proposed linear potential functions are derived using parabolic curves, providing an analytical form with physical interpretations. The corresponding energy function and transmission coefficients are presented, facilitating a simplified understanding of tunneling behavior. Theoretical implications of the proposed model are discussed, emphasizing the ease of parameter variation and its applicability to diverse biological scenarios. In the numerical demonstration, two case studies are presented: (1) examining proton tunneling in DNA point mutations and (2) exploring electron tunneling in biological receptors, specifically the ACE2 receptor in the context of SARS-CoV-2.
量子生物学是量子力学与生物学的交叉学科,研究生物过程中的量子现象。量子隧穿是其中一个关键重点,粒子在隧穿过程中会穿越能量壁垒,这种现象在各种生物环境中都具有潜在意义。本文介绍了一类新的线性势函数,用于研究生物过程中的量子隧穿。线性势函数的简单性使得薛定谔方程的解析解成为可能,与更复杂的数值方法相比,它具有更高的效率。所提出的线性势函数是利用抛物线曲线推导出来的,提供了一种具有物理解释的分析形式。提出了相应的能量函数和传输系数,有助于简化对隧道行为的理解。讨论了所提模型的理论意义,强调了参数变化的简易性及其对不同生物场景的适用性。在数值演示中,介绍了两个案例研究:(1) 研究 DNA 点突变中的质子隧道效应;(2) 探索生物受体中的电子隧道效应,特别是 SARS-CoV-2 背景下的 ACE2 受体。
{"title":"Quantum Tunneling With Linear Potential: Case Studies in Biological Processes","authors":"Phuong-Nam Nguyen","doi":"10.1109/TMBMC.2024.3471189","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3471189","url":null,"abstract":"Quantum biology, at the intersection of quantum mechanics and biology, investigates the involvement of quantum phenomena in biological processes. A pivotal focus is quantum tunneling, wherein particles traverse energy barriers, a phenomenon with potential significance in various biological contexts. This article introduces a new class of linear potential functions for studying quantum tunneling in biological processes. The simplicity of linear potentials enables analytical solutions to the Schrödinger equation, offering efficiency compared to more complex numerical methods. The proposed linear potential functions are derived using parabolic curves, providing an analytical form with physical interpretations. The corresponding energy function and transmission coefficients are presented, facilitating a simplified understanding of tunneling behavior. Theoretical implications of the proposed model are discussed, emphasizing the ease of parameter variation and its applicability to diverse biological scenarios. In the numerical demonstration, two case studies are presented: (1) examining proton tunneling in DNA point mutations and (2) exploring electron tunneling in biological receptors, specifically the ACE2 receptor in the context of SARS-CoV-2.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"623-632"},"PeriodicalIF":2.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1109/TMBMC.2024.3458329
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2024.3458329","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458329","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694725","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1109/TMBMC.2024.3463128
Adam Noel;Andrew W. Eckford;Radek Erban;Matteo Icardi;Gregory Reeves
{"title":"Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments","authors":"Adam Noel;Andrew W. Eckford;Radek Erban;Matteo Icardi;Gregory Reeves","doi":"10.1109/TMBMC.2024.3463128","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3463128","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"422-424"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1109/TMBMC.2024.3458670
Chun Tung Chou;Mohammad Zoofaghari;Ozgur B. Akan;Mladen Veletic;Ilangko Balasingham
{"title":"Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications","authors":"Chun Tung Chou;Mohammad Zoofaghari;Ozgur B. Akan;Mladen Veletic;Ilangko Balasingham","doi":"10.1109/TMBMC.2024.3458670","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458670","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"455-457"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1109/TMBMC.2024.3458333
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2024.3458333","DOIUrl":"https://doi.org/10.1109/TMBMC.2024.3458333","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 3","pages":"C2-C2"},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10694704","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}