Microfluidic Molecular Communication Transmitter Based on Hydrodynamic Gating

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2024-02-01 DOI:10.1109/TMBMC.2024.3361443
Iman Mokari Bolhassan;Ali Abdali;Murat Kuscu
{"title":"Microfluidic Molecular Communication Transmitter Based on Hydrodynamic Gating","authors":"Iman Mokari Bolhassan;Ali Abdali;Murat Kuscu","doi":"10.1109/TMBMC.2024.3361443","DOIUrl":null,"url":null,"abstract":"Molecular Communications (MC) is a bio-inspired paradigm for transmitting information using chemical signals, which can enable novel applications at the junction of biotechnology, nanotechnology, and information and communication technologies. However, designing efficient and reliable MC systems poses significant challenges due to the complex nature of the physical channel and the limitations of the micro/nanoscale transmitter and receiver devices. In this paper, we propose a practical microfluidic transmitter architecture for MC based on hydrodynamic gating, a widely utilized technique for generating chemical waveforms in microfluidic channels with high spatiotemporal resolution. We develop an approximate analytical model that can capture the fundamental characteristics of the generated molecular pulses, such as pulse width, pulse amplitude, and pulse delay, as functions of main system parameters, such as flow velocity and gating duration. We validate the accuracy of our model by comparing it with finite element simulations using COMSOL Multiphysics under various system settings. Our analytical model can enable the optimization of microfluidic transmitters for MC applications in terms of minimizing intersymbol interference and maximizing data transmission rate.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418566/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular Communications (MC) is a bio-inspired paradigm for transmitting information using chemical signals, which can enable novel applications at the junction of biotechnology, nanotechnology, and information and communication technologies. However, designing efficient and reliable MC systems poses significant challenges due to the complex nature of the physical channel and the limitations of the micro/nanoscale transmitter and receiver devices. In this paper, we propose a practical microfluidic transmitter architecture for MC based on hydrodynamic gating, a widely utilized technique for generating chemical waveforms in microfluidic channels with high spatiotemporal resolution. We develop an approximate analytical model that can capture the fundamental characteristics of the generated molecular pulses, such as pulse width, pulse amplitude, and pulse delay, as functions of main system parameters, such as flow velocity and gating duration. We validate the accuracy of our model by comparing it with finite element simulations using COMSOL Multiphysics under various system settings. Our analytical model can enable the optimization of microfluidic transmitters for MC applications in terms of minimizing intersymbol interference and maximizing data transmission rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流体动力门控的微流控分子通信发射器
分子通信(MC)是一种利用化学信号传输信息的生物启发范式,可在生物技术、纳米技术以及信息和通信技术的交界处实现新的应用。然而,由于物理信道的复杂性以及微/纳米级发射器和接收器设备的局限性,设计高效可靠的 MC 系统面临着巨大挑战。在本文中,我们提出了一种基于流体动力门控的实用微流控发射器架构,这是一种广泛应用于在微流控通道中产生高时空分辨率化学波形的技术。我们建立了一个近似分析模型,该模型可以捕捉到所产生的分子脉冲的基本特征,如脉冲宽度、脉冲幅度和脉冲延迟,这些都是主要系统参数(如流速和选通持续时间)的函数。我们将模型与 COMSOL Multiphysics 在各种系统设置下进行的有限元模拟进行了比较,从而验证了模型的准确性。我们的分析模型可以帮助优化微流控应用中的微流控发射器,从而最大限度地减少符号间干扰和提高数据传输速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1