Experimental Implementation of Molecule Shift Keying for Enhanced Molecular Communication

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2024-02-22 DOI:10.1109/TMBMC.2024.3368759
Federico Calì;Salvatore Barreca;Giovanni Li-Destri;Alberto Torrisi;Antonino Licciardello;Nunzio Tuccitto
{"title":"Experimental Implementation of Molecule Shift Keying for Enhanced Molecular Communication","authors":"Federico Calì;Salvatore Barreca;Giovanni Li-Destri;Alberto Torrisi;Antonino Licciardello;Nunzio Tuccitto","doi":"10.1109/TMBMC.2024.3368759","DOIUrl":null,"url":null,"abstract":"Molecular communication is a communication paradigm inspired by biological systems, where chemical signals are used to encode and transmit information. MoSK (Molecule Shift Keying) is proposed as a modulation technique that utilizes different types of signaling molecules to encode digital information. A prototype platform for MoSK implementation is presented, including a transmitter with infusion and selection valves, and a fluorescence-based receiver. The receiver detects and decodes fluorescence signals emitted by Graphene Quantum Dots (GQDs), which are water-soluble and fluorescent molecular messengers. The fluorescence signals of Blue-GQDs and Cyan-GQDs are acquired by the receiver, and the performance of the system is evaluated in terms of synchronization, detection threshold, and symbol recognition using Principal Component Analysis (PCA). The results demonstrate the successful detection and recognition of different symbols, even at lower concentrations. PCA proves to be an efficient method for qualitative recognition of molecular messengers in MoSK-based molecular communication systems.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10443671/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular communication is a communication paradigm inspired by biological systems, where chemical signals are used to encode and transmit information. MoSK (Molecule Shift Keying) is proposed as a modulation technique that utilizes different types of signaling molecules to encode digital information. A prototype platform for MoSK implementation is presented, including a transmitter with infusion and selection valves, and a fluorescence-based receiver. The receiver detects and decodes fluorescence signals emitted by Graphene Quantum Dots (GQDs), which are water-soluble and fluorescent molecular messengers. The fluorescence signals of Blue-GQDs and Cyan-GQDs are acquired by the receiver, and the performance of the system is evaluated in terms of synchronization, detection threshold, and symbol recognition using Principal Component Analysis (PCA). The results demonstrate the successful detection and recognition of different symbols, even at lower concentrations. PCA proves to be an efficient method for qualitative recognition of molecular messengers in MoSK-based molecular communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强分子通信的分子位移键控的实验实现
分子通信是一种受生物系统启发的通信模式,利用化学信号来编码和传输信息。MoSK(分子偏移键控)是一种利用不同类型的信号分子来编码数字信息的调制技术。本文介绍了实现 MoSK 的原型平台,包括一个带有输液和选择阀的发射器和一个基于荧光的接收器。接收器可检测和解码石墨烯量子点(GQDs)发出的荧光信号,GQDs 是水溶性荧光分子信使。接收器获取了蓝色石墨烯量子点(Blue-GQDs)和青色石墨烯量子点(Cyan-GQDs)的荧光信号,并利用主成分分析法(PCA)从同步、检测阈值和符号识别等方面评估了系统的性能。结果表明,即使在较低的浓度下,也能成功检测和识别不同的符号。在基于 MoSK 的分子通信系统中,PCA 被证明是定性识别分子信使的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1