FVCNet: Detection obstacle method based on feature visual clustering network in power line inspection

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-03-18 DOI:10.1111/coin.12634
Qiu-Yu Wang, Xian-Long Lv, Shi-Kai Tang
{"title":"FVCNet: Detection obstacle method based on feature visual clustering network in power line inspection","authors":"Qiu-Yu Wang,&nbsp;Xian-Long Lv,&nbsp;Shi-Kai Tang","doi":"10.1111/coin.12634","DOIUrl":null,"url":null,"abstract":"<p>Power line inspection is an important means to eliminate hidden dangers of power lines. It is a difficult research problem how to solve the low accuracy of power line inspection based on deep neural network (DNN) due to the problems of multi-view-shape, small-size object. In this paper, an automatic detection model based on Feature visual clustering network (FVCNet) for power line inspection is established. First, an unsupervised clustering method for power line inspection is proposed, and applied to construct a detection model which can recognize multi-view-shape objects and enhanced object features. Then, the bilinear interpolation method is used to Feature enhancement method, and the enhanced high-level semantics and low-level semantics are fused to solve the problems of small object size and single sample. In this paper, FVCNet is applied to the MS-COCO 2017 data set and self-made power line inspection data set, and the test accuracy is increased to 61.2% and 82.0%, respectively. Compared with other models, especially for the categories that are greatly affected by multi-view-shape, the test accuracy has been improved significantly.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12634","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Power line inspection is an important means to eliminate hidden dangers of power lines. It is a difficult research problem how to solve the low accuracy of power line inspection based on deep neural network (DNN) due to the problems of multi-view-shape, small-size object. In this paper, an automatic detection model based on Feature visual clustering network (FVCNet) for power line inspection is established. First, an unsupervised clustering method for power line inspection is proposed, and applied to construct a detection model which can recognize multi-view-shape objects and enhanced object features. Then, the bilinear interpolation method is used to Feature enhancement method, and the enhanced high-level semantics and low-level semantics are fused to solve the problems of small object size and single sample. In this paper, FVCNet is applied to the MS-COCO 2017 data set and self-made power line inspection data set, and the test accuracy is increased to 61.2% and 82.0%, respectively. Compared with other models, especially for the categories that are greatly affected by multi-view-shape, the test accuracy has been improved significantly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FVCNet:电力线路检测中基于特征视觉聚类网络的障碍物检测方法
电力线路巡检是消除电力线路隐患的重要手段。如何解决基于深度神经网络(DNN)的电力线路巡检因多视角形状、小尺寸物体等问题而导致的巡检精度低的问题,是一个研究难点。本文建立了一种基于特征视觉聚类网络(FVCNet)的电力线检测自动检测模型。首先,提出了一种用于电力线路检测的无监督聚类方法,并将其应用于构建可识别多视角形状物体和增强物体特征的检测模型。然后,将双线性插值法用于特征增强方法,并将增强后的高层语义与低层语义融合,以解决对象尺寸小和样本单一的问题。本文将 FVCNet 应用于 MS-COCO 2017 数据集和自制电力线路检测数据集,测试准确率分别提高到 61.2% 和 82.0%。与其他模型相比,特别是对于受多视角形状影响较大的类别,测试精度有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter An Implementation of Adaptive Multi-CNN Feature Fusion Model With Attention Mechanism With Improved Heuristic Algorithm for Kidney Stone Detection TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification Deep Reinforcement Learning Based Flow Aware-QoS Provisioning in SD-IoT for Precision Agriculture Deep Learning and X-Ray Imaging Innovations for Pneumonia Infection Diagnosis: Introducing DeepPneuNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1