{"title":"An effective graph embedded YOLOv5 model for forest fire detection","authors":"Hui Yuan, Zhumao Lu, Ruizhe Zhang, Jinsong Li, Shuai Wang, Jingjing Fan","doi":"10.1111/coin.12640","DOIUrl":null,"url":null,"abstract":"<p>The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.