Institute for Foundations of Machine Learning (IFML): Advancing AI systems that will transform our world

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-03-19 DOI:10.1002/aaai.12163
Adam Klivans, Alexandros G. Dimakis, Kristen Grauman, Jonathan I. Tamir, Daniel J. Diaz, Karen Davidson
{"title":"Institute for Foundations of Machine Learning (IFML): Advancing AI systems that will transform our world","authors":"Adam Klivans,&nbsp;Alexandros G. Dimakis,&nbsp;Kristen Grauman,&nbsp;Jonathan I. Tamir,&nbsp;Daniel J. Diaz,&nbsp;Karen Davidson","doi":"10.1002/aaai.12163","DOIUrl":null,"url":null,"abstract":"<p>The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine-tuning, and diffusion with game-changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use-inspired topics:\n\n </p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"35-41"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine-tuning, and diffusion with game-changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use-inspired topics:

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习基础研究所(IFML):推进人工智能系统,改变我们的世界
机器学习基础研究所(IFML)专注于为下一代机器学习模型提供核心基础工具。它的研究为算法和数据集奠定了基础,使生成式人工智能(AI)更加准确可靠。IFML 的总部设在德克萨斯大学奥斯汀分校,研究人员的合作遍及华盛顿大学、斯坦福大学、加州大学洛杉矶分校、微软研究院、圣塔菲研究所和威奇托州立大学。在过去的一年里,我们见证了人工智能在基础模型、LLM、微调和扩散等 IFML 核心课题上取得的令人难以置信的突破,其改变游戏规则的应用几乎影响了科学技术的每一个领域。在本文中,我们力求突出基础机器学习研究在关键用途启发课题上的应用:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1