Huan Li, Jay R. Black, Yiwei Hao, Peng Hao, Achyut Mishra, Ralf R. Haese
{"title":"Modelling diagenetic reactions and secondary porosity generation in sandstones controlled by the advection of low-molecular-weight organic acids","authors":"Huan Li, Jay R. Black, Yiwei Hao, Peng Hao, Achyut Mishra, Ralf R. Haese","doi":"10.1111/bre.12860","DOIUrl":null,"url":null,"abstract":"<p>Higher secondary porosity was observed in the centre of a sandstone unit in the Eocene Shahejie Formation fan delta front sandstones from the Bozhong Depression, Bohai Bay Basin. This differs from past studies showing secondary porosity mainly in the marginal parts of sandstones adjacent to shales. This study utilized reactive transport models involving low-molecular-weight organic acids (LMWOA) to discuss potential processes resulting in the contrary distribution of secondary porosity. An interface model simulating LMWOA diffusion from adjacent shales to the sandstone resulted in secondary porosity in sandstones adjacent to shales. In contrast, an advection model simulating advective transport of LMWOA parallel to the sandstone bedding successfully generated higher secondary porosity in the central part. The central part of the sandstone exhibited better grain sorting (greater depositional porosity) and significantly less early carbonate cements compared to the marginal sandstone parts. Consequently, the central part had greater porosity prior to the dissolution through LMWOA. The initially higher porosity in the central part allowed for a higher advective flux of LMWOA-rich water and associated lower pH, resulting in decreased oligoclase saturation, higher oligoclase dissolution rates and ultimately higher secondary porosity. This study indicates that grain sorting during sediment deposition, early carbonate cementation, LMWOA production in adjacent shales, and advection processes collectively control the diagenetic reactions and the distribution of secondary porosity in sandstones.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12860","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12860","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Higher secondary porosity was observed in the centre of a sandstone unit in the Eocene Shahejie Formation fan delta front sandstones from the Bozhong Depression, Bohai Bay Basin. This differs from past studies showing secondary porosity mainly in the marginal parts of sandstones adjacent to shales. This study utilized reactive transport models involving low-molecular-weight organic acids (LMWOA) to discuss potential processes resulting in the contrary distribution of secondary porosity. An interface model simulating LMWOA diffusion from adjacent shales to the sandstone resulted in secondary porosity in sandstones adjacent to shales. In contrast, an advection model simulating advective transport of LMWOA parallel to the sandstone bedding successfully generated higher secondary porosity in the central part. The central part of the sandstone exhibited better grain sorting (greater depositional porosity) and significantly less early carbonate cements compared to the marginal sandstone parts. Consequently, the central part had greater porosity prior to the dissolution through LMWOA. The initially higher porosity in the central part allowed for a higher advective flux of LMWOA-rich water and associated lower pH, resulting in decreased oligoclase saturation, higher oligoclase dissolution rates and ultimately higher secondary porosity. This study indicates that grain sorting during sediment deposition, early carbonate cementation, LMWOA production in adjacent shales, and advection processes collectively control the diagenetic reactions and the distribution of secondary porosity in sandstones.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.