Radar near-field sensing using metasurface for biomedical applications

Mohammad Omid Bagheri, Ali Gharamohammadi, Serene Abu-Sardanah, Omar M. Ramahi, George Shaker
{"title":"Radar near-field sensing using metasurface for biomedical applications","authors":"Mohammad Omid Bagheri, Ali Gharamohammadi, Serene Abu-Sardanah, Omar M. Ramahi, George Shaker","doi":"10.1038/s44172-024-00194-4","DOIUrl":null,"url":null,"abstract":"Metasurfaces, promising technology exemplified by their precise manipulation of incident wave properties and exquisite control over electromagnetic field propagation, offer unparalleled benefits when integrated into radar systems, providing higher resolution and increased sensitivity. Here, we introduce a metasurface-enhanced millimeter-wave radar system for advanced near-field bio-sensing, underscoring its adaptability to the skin-device interface, and heightened diagnostic precision in non-invasive healthcare monitoring. The low-profile planar metasurface, featuring a phase-synthesized array for near-field impedance matching, integrates with radar antennas to concentrate absorbed power density within the skin medium while simultaneously improving the received power level, thereby enhancing sensor signal-to-noise ratio. Measurement verification employs a phantom with material properties resembling human skin within the radar frequency range of 58 to 63 GHz. Results demonstrate a notable increase of over 11 dB in near-field Poynting power density within the phantom model, while radar signal processing analysis indicates a commensurate improvement in signal-to-noise ratio, thus facilitating enhanced sensing in biomedical applications. Mohammad Omid Bagheri and colleagues introduce a metasurface-enhanced millimetre-wave radar system designed for near-field biosensing. Their device adapts to the properties of the skin-device interface, providing heightened diagnostic precision in wearable healthcare monitoring applications.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00194-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00194-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metasurfaces, promising technology exemplified by their precise manipulation of incident wave properties and exquisite control over electromagnetic field propagation, offer unparalleled benefits when integrated into radar systems, providing higher resolution and increased sensitivity. Here, we introduce a metasurface-enhanced millimeter-wave radar system for advanced near-field bio-sensing, underscoring its adaptability to the skin-device interface, and heightened diagnostic precision in non-invasive healthcare monitoring. The low-profile planar metasurface, featuring a phase-synthesized array for near-field impedance matching, integrates with radar antennas to concentrate absorbed power density within the skin medium while simultaneously improving the received power level, thereby enhancing sensor signal-to-noise ratio. Measurement verification employs a phantom with material properties resembling human skin within the radar frequency range of 58 to 63 GHz. Results demonstrate a notable increase of over 11 dB in near-field Poynting power density within the phantom model, while radar signal processing analysis indicates a commensurate improvement in signal-to-noise ratio, thus facilitating enhanced sensing in biomedical applications. Mohammad Omid Bagheri and colleagues introduce a metasurface-enhanced millimetre-wave radar system designed for near-field biosensing. Their device adapts to the properties of the skin-device interface, providing heightened diagnostic precision in wearable healthcare monitoring applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用元表面的雷达近场传感技术促进生物医学应用
元表面是一项前景广阔的技术,它能精确操纵入射波的特性并精妙地控制电磁场的传播,当集成到雷达系统中时,可提供无与伦比的优势,提供更高的分辨率和更高的灵敏度。在这里,我们介绍一种用于先进近场生物传感的元表面增强毫米波雷达系统,强调其对皮肤-设备界面的适应性,以及在无创医疗监测中提高诊断精度。低调的平面元表面采用相位合成阵列进行近场阻抗匹配,与雷达天线集成,在皮肤介质中集中吸收功率密度,同时提高接收功率水平,从而提高传感器的信噪比。在 58 至 63 千兆赫的雷达频率范围内,采用了与人体皮肤材料特性相似的模型进行测量验证。结果表明,模型内的近场 Poynting 功率密度显著提高了 11 分贝以上,而雷达信号处理分析表明,信噪比也得到了相应改善,从而促进了生物医学应用中的传感增强。Mohammad Omid Bagheri 及其同事介绍了一种为近场生物传感而设计的元表面增强毫米波雷达系统。他们的设备能适应皮肤-设备界面的特性,在可穿戴医疗监控应用中提供更高的诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving Cryogenic quantum computer control signal generation using high-electron-mobility transistors A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films Towards a general computed tomography image segmentation model for anatomical structures and lesions 5 G new radio fiber-wireless converged systems by injection locking multi-optical carrier into directly-modulated lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1