{"title":"Experimental Study on Logging Evaluation of Matrix Mineral Modulus of Tight Sandstone Reservoir","authors":"Maoxian Pu","doi":"10.1007/s10553-024-01660-7","DOIUrl":null,"url":null,"abstract":"<p>Porosity has an important influence on the elastic properties of tight sandstone. Using acoustic models to study the matrix mineral modulus of tight sandstone reservoirs can provide an important reference for tight sandstone reservoir evaluation. In this paper, taking tight sandstone as an example, starting from the microscopic pore scale and considering the heterogeneity of the rock skeleton, the effect of the effective stress coefficient of porosity (n) on the elastic properties of tight sandstone was discussed. In addition, the acoustic model was used to construct the calculation method of the matrix mineral shear modulus. The research results showed that the porosity disturbance model can better describe the change law of the elastic properties of the tight sandstone. As the value of n decreases from 1 to 0, the bulk modulus (K<sub>φ</sub>) of the unencapsulated rock gradually decreases. In the process of increasing from n=0 to n=4, the rock Kud has a slight increase trend. The fluid pressure does not produce a reverse stress effect on the movement of the rock pore boundary, that is, the fluid pressure does not have any effect on the change of the rock porosity. When n>0, the pore fluid pressure will affect the movement of the rock pore boundary to a certain extent. When the porosity disturbance is not considered, the K<sub>φ</sub> value of the formation rock will be overestimated. The Ko of tight sandstone can be obtained using Gassmann fluid substitution equation. The calculation results of modulus parameters accord with the internal mineral composition and structural characteristics of tight sandstone, which shows the effectiveness of the method.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01660-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Porosity has an important influence on the elastic properties of tight sandstone. Using acoustic models to study the matrix mineral modulus of tight sandstone reservoirs can provide an important reference for tight sandstone reservoir evaluation. In this paper, taking tight sandstone as an example, starting from the microscopic pore scale and considering the heterogeneity of the rock skeleton, the effect of the effective stress coefficient of porosity (n) on the elastic properties of tight sandstone was discussed. In addition, the acoustic model was used to construct the calculation method of the matrix mineral shear modulus. The research results showed that the porosity disturbance model can better describe the change law of the elastic properties of the tight sandstone. As the value of n decreases from 1 to 0, the bulk modulus (Kφ) of the unencapsulated rock gradually decreases. In the process of increasing from n=0 to n=4, the rock Kud has a slight increase trend. The fluid pressure does not produce a reverse stress effect on the movement of the rock pore boundary, that is, the fluid pressure does not have any effect on the change of the rock porosity. When n>0, the pore fluid pressure will affect the movement of the rock pore boundary to a certain extent. When the porosity disturbance is not considered, the Kφ value of the formation rock will be overestimated. The Ko of tight sandstone can be obtained using Gassmann fluid substitution equation. The calculation results of modulus parameters accord with the internal mineral composition and structural characteristics of tight sandstone, which shows the effectiveness of the method.
期刊介绍:
Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.