I. N. Kulyashova, A. D. Badikova, A. I. Voloshin, S. R. Sahibgareev
{"title":"Investigation of the Feasibility of Obtaining a Lignosulfonate Reagent Based on Complex Compounds to Regulate Drilling Mud Parameters","authors":"I. N. Kulyashova, A. D. Badikova, A. I. Voloshin, S. R. Sahibgareev","doi":"10.1007/s10553-024-01651-8","DOIUrl":null,"url":null,"abstract":"<p>An investigation was carried out on the feasibility of obtaining a reagent based on complex compounds for regulating the parameters of a drilling mud by introducing complex‑forming ferrous cations into a sodium lignosulfonate composition followed by additional modification with phosphonic compounds and obtaining a polyelectrolyte complex derived from anionic polyelectrolyte‑sodium lignosulfonate and modified cationic starch. The presence of functional groups in the sodium lignosulfonate sample studied capable of complexation was established by IR spectrometry. The determination of the optimal ratios of the starting components for the obtaining complex compounds using lignosulfonate, iron sulfate, and phosphonic compounds was carried by mathematical modelling with the Statistica 12 software package. The surface activity of the experimental samples was studied by a stalagmometric method (drop count method). The particle size distribution method using an SALD‑7101 laser analyzer was employed to study changes in the structure of the macromolecule of sodium lignosulfonate and a polyelectrolyte complex derived from sodium lignosulfonate and cationic starch. Obtaining a stable polyelectrolyte complex by selecting the optimal ratios of the anionic and cationic components involved measuring the dependence of the impedance of an electrochemical cell on the alternating currency frequency. The best mole ratio for preparation of the polyelectrolyte complex was 1:1. Feasibility was studied for using this lignosulfonate reagent based on complex compounds as a reagent for regulating the drilling mud parameters in the temperature range from 20° to 160-180°C.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"36 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01651-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation was carried out on the feasibility of obtaining a reagent based on complex compounds for regulating the parameters of a drilling mud by introducing complex‑forming ferrous cations into a sodium lignosulfonate composition followed by additional modification with phosphonic compounds and obtaining a polyelectrolyte complex derived from anionic polyelectrolyte‑sodium lignosulfonate and modified cationic starch. The presence of functional groups in the sodium lignosulfonate sample studied capable of complexation was established by IR spectrometry. The determination of the optimal ratios of the starting components for the obtaining complex compounds using lignosulfonate, iron sulfate, and phosphonic compounds was carried by mathematical modelling with the Statistica 12 software package. The surface activity of the experimental samples was studied by a stalagmometric method (drop count method). The particle size distribution method using an SALD‑7101 laser analyzer was employed to study changes in the structure of the macromolecule of sodium lignosulfonate and a polyelectrolyte complex derived from sodium lignosulfonate and cationic starch. Obtaining a stable polyelectrolyte complex by selecting the optimal ratios of the anionic and cationic components involved measuring the dependence of the impedance of an electrochemical cell on the alternating currency frequency. The best mole ratio for preparation of the polyelectrolyte complex was 1:1. Feasibility was studied for using this lignosulfonate reagent based on complex compounds as a reagent for regulating the drilling mud parameters in the temperature range from 20° to 160-180°C.
期刊介绍:
Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.