A Single-Antenna Full-Duplex Subsystem With High Isolation and High Gain

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Antennas and Propagation Pub Date : 2024-03-18 DOI:10.1109/OJAP.2024.3376568
Li Zhang;Miao Lv;Zhi-Ya Zhang;Yu Wang;Fanchao Zeng;Can Ding;Chenhui Dai
{"title":"A Single-Antenna Full-Duplex Subsystem With High Isolation and High Gain","authors":"Li Zhang;Miao Lv;Zhi-Ya Zhang;Yu Wang;Fanchao Zeng;Can Ding;Chenhui Dai","doi":"10.1109/OJAP.2024.3376568","DOIUrl":null,"url":null,"abstract":"In this paper, a single-antenna full-duplex subsystem is proposed, consisting of a high isolation network and a stacked patch antenna with reflector. The employed patch antenna is fed by two ports with very similar input impedances to make the reflected signals identical. The high isolation network composed of two hybrids and two circulators plays a crucial part in achieving high transmitting to receiving (Tx-Rx) isolation. It is able to cancel out the inevitable reflected signals from the antenna ports and the leakage signals from the circulators. The theoretical analysis is presented and the subsystem is also fabricated and measured. According to the measurement results, across the operation band from 2.018 to 2.12 GHz, the subsystem has VSWR <1.55,> 50 dB, axial ratio <2.4,>10.2 dBic. Compared with the state-of-art single-antenna full-duplex subsystems, the proposed design features high Tx-Rx isolation level and high gain, which is suitable for microwave radio relay communication and satellite detection application.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10470386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10470386/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a single-antenna full-duplex subsystem is proposed, consisting of a high isolation network and a stacked patch antenna with reflector. The employed patch antenna is fed by two ports with very similar input impedances to make the reflected signals identical. The high isolation network composed of two hybrids and two circulators plays a crucial part in achieving high transmitting to receiving (Tx-Rx) isolation. It is able to cancel out the inevitable reflected signals from the antenna ports and the leakage signals from the circulators. The theoretical analysis is presented and the subsystem is also fabricated and measured. According to the measurement results, across the operation band from 2.018 to 2.12 GHz, the subsystem has VSWR <1.55,> 50 dB, axial ratio <2.4,>10.2 dBic. Compared with the state-of-art single-antenna full-duplex subsystems, the proposed design features high Tx-Rx isolation level and high gain, which is suitable for microwave radio relay communication and satellite detection application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高隔离度和高增益的单天线全双工子系统
本文提出了一种单天线全双工子系统,由一个高隔离度网络和一个带反射器的叠层贴片天线组成。采用的贴片天线由两个输入阻抗非常接近的端口馈电,以使反射信号相同。由两个混合器和两个环行器组成的高隔离度网络在实现高发射到接收(Tx-Rx)隔离度方面起着至关重要的作用。它能够抵消天线端口不可避免的反射信号和环行器的泄漏信号。本文介绍了理论分析,并制作和测量了该子系统。测量结果表明,在 2.018 至 2.12 GHz 的工作频段内,子系统的驻波比为 50 dB,轴向比为 10.2 dBic。与最先进的单天线全双工子系统相比,所提出的设计具有高 Tx-Rx 隔离度和高增益的特点,适用于微波无线电中继通信和卫星探测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
期刊最新文献
IEEE Open Journal of Antennas and Propagation Instructions for authors Enhancing Transparent Circularly Polarized Antenna Performance for Automotive Applications Active Gain-Controlled Beam-Steering Transmissive Surface Spillover Analysis and Mainbeam Characterisation of Arctic Weather Satellite radiometer Using Method of Moments Recent Advances in Antennas for Biotelemetry and Healthcare Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1