{"title":"Anti-Parity-Time Symmetry and Non-Reciprocal Transmission in Photonic Dimer","authors":"Bo Lu;Yong-Pan Gao;Lu Liu;Chuan Wang","doi":"10.1109/TNANO.2024.3375848","DOIUrl":null,"url":null,"abstract":"In this work, the optical properties and dynamical behaviors of the optical parametric oscillation under the anti Parity-Time (anti-PT) symmetry are studied. The non-Hermitian optical system is composed of two whispering-gallery mode micorcavities with one cavity supports the \n<inline-formula><tex-math>$\\chi _{2}$</tex-math></inline-formula>\n nonliearity. Compared with the previous non-Hermitian system that relies on optical gain and loss, the proposed system could achieve the ultra-fast control of anti-PT symmetry by adjusting the parameter gain and coupling strength. Moreover, by focusing on the anti-PT symmetrical system and asymmetrical gain under linear pumping conditions, we find that the system provides the asymmetric transmission under the anti-PT symmetry, meanwhile the non-reciprocal transmission would be achieved by breaking the anti-PT symmetry. We believe these results may be further applied to optical diodes, optical switches and other optical devices which may pave the way of nanophotonics and quantum information science.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"311-316"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10470359/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the optical properties and dynamical behaviors of the optical parametric oscillation under the anti Parity-Time (anti-PT) symmetry are studied. The non-Hermitian optical system is composed of two whispering-gallery mode micorcavities with one cavity supports the
$\chi _{2}$
nonliearity. Compared with the previous non-Hermitian system that relies on optical gain and loss, the proposed system could achieve the ultra-fast control of anti-PT symmetry by adjusting the parameter gain and coupling strength. Moreover, by focusing on the anti-PT symmetrical system and asymmetrical gain under linear pumping conditions, we find that the system provides the asymmetric transmission under the anti-PT symmetry, meanwhile the non-reciprocal transmission would be achieved by breaking the anti-PT symmetry. We believe these results may be further applied to optical diodes, optical switches and other optical devices which may pave the way of nanophotonics and quantum information science.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.