Mariano S. Iseas, M. Florencia Rossi, Marie-Claire Aravena Acuña, Verónica A. Pancotto
{"title":"Influence of the microtopography of patagonian peatbogs on the fluxes of greenhouse gasses and dissolved carbon in porewater","authors":"Mariano S. Iseas, M. Florencia Rossi, Marie-Claire Aravena Acuña, Verónica A. Pancotto","doi":"10.1016/j.ecohyd.2024.01.013","DOIUrl":null,"url":null,"abstract":"Peatlands play an important role in global carbon cycling, as they act as a natural sink of carbon dioxide (CO) or as a source of methane (CH). The influence of microtopography (lawns and hummock-hollow complexes) in the biogeochemical dynamics of dissolved organic and inorganic carbon (DOC and DIC) and dissolved CH and CO is generally miss-considered. Southernmost Patagonia has huge areas of pristine peatlands, which are still in a largely natural state with scarce anthropogenic influence. In this study we provide foundational insights into the dynamics of greenhouse gasses (GHGs) and DOC in dominated peatlands of Southern Patagonia, assessing the impact of microtopography on these dynamics. The stocks of dissolved GHGs and DOC in hummock-hollows complex and lawns were analysed at three depths (25, 50, and 75 cm) in four ombrotrophic peatbogs. CH, NO and CO fluxes, net ecosystem exchange (NEE) and gross primary productivity (GPP) were also studied. CO and CH fluxes were strongly affected by microtopography. Hummock-hollows showed higher CO fluxes, and temperature and radiation were the main drivers for respiration and GPP, respectively. In addition, in this microtopography, higher DOC concentrations were observed at the top depth. In contrast, lawns acted as a source of CH, with higher emission rates and high dissolved GHGs concentration throughout the depth profile.","PeriodicalId":56070,"journal":{"name":"Ecohydrology & Hydrobiology","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology & Hydrobiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecohyd.2024.01.013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peatlands play an important role in global carbon cycling, as they act as a natural sink of carbon dioxide (CO) or as a source of methane (CH). The influence of microtopography (lawns and hummock-hollow complexes) in the biogeochemical dynamics of dissolved organic and inorganic carbon (DOC and DIC) and dissolved CH and CO is generally miss-considered. Southernmost Patagonia has huge areas of pristine peatlands, which are still in a largely natural state with scarce anthropogenic influence. In this study we provide foundational insights into the dynamics of greenhouse gasses (GHGs) and DOC in dominated peatlands of Southern Patagonia, assessing the impact of microtopography on these dynamics. The stocks of dissolved GHGs and DOC in hummock-hollows complex and lawns were analysed at three depths (25, 50, and 75 cm) in four ombrotrophic peatbogs. CH, NO and CO fluxes, net ecosystem exchange (NEE) and gross primary productivity (GPP) were also studied. CO and CH fluxes were strongly affected by microtopography. Hummock-hollows showed higher CO fluxes, and temperature and radiation were the main drivers for respiration and GPP, respectively. In addition, in this microtopography, higher DOC concentrations were observed at the top depth. In contrast, lawns acted as a source of CH, with higher emission rates and high dissolved GHGs concentration throughout the depth profile.
期刊介绍:
Ecohydrology & Hydrobiology is an international journal that aims to advance ecohydrology as the study of the interplay between ecological and hydrological processes from molecular to river basin scales, and to promote its implementation as an integrative management tool to harmonize societal needs with biosphere potential.