Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Metrika Pub Date : 2024-03-19 DOI:10.1007/s00184-024-00958-0
Qing Liu, Xiaohui Liu, Zihao Hu
{"title":"Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean","authors":"Qing Liu, Xiaohui Liu, Zihao Hu","doi":"10.1007/s00184-024-00958-0","DOIUrl":null,"url":null,"abstract":"<p>Median absolute deviation (hereafter MAD) is known as a robust alternative to the ordinary variance. It has been widely utilized to induce robust statistical inferential procedures. In this paper, we investigate the strong and weak Bahadur representations of its bootstrap counterpart. As a useful application, we utilize the results to derive the weak Bahadur representation of the bootstrap sample projection depth weighted mean—a quite important location estimator depending on MAD.\n</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00958-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Median absolute deviation (hereafter MAD) is known as a robust alternative to the ordinary variance. It has been widely utilized to induce robust statistical inferential procedures. In this paper, we investigate the strong and weak Bahadur representations of its bootstrap counterpart. As a useful application, we utilize the results to derive the weak Bahadur representation of the bootstrap sample projection depth weighted mean—a quite important location estimator depending on MAD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自举绝对偏差中值的巴哈杜尔表示法及其在投影深度加权平均值中的应用
中位绝对偏差(以下简称 MAD)被称为普通方差的稳健替代方案。它被广泛用于稳健的统计推断程序。在本文中,我们研究了其 bootstrap 对应的强和弱 Bahadur 表示。作为一个有用的应用,我们利用这些结果推导出了自举样本投影深度加权均值的弱巴哈多表示--这是一个依赖于 MAD 的相当重要的位置估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
期刊最新文献
Smoothed partially linear varying coefficient quantile regression with nonignorable missing response Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs Mean test for high-dimensional data based on covariance matrix with linear structures Bounds of expectations of order statistics for distributions possessing monotone reversed failure rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1