Influence of ion size on the charge storage mechanism of MXenes: a combination of experimental and computational study

Huiwen Wan, Rui Wang, Huiyang Fan, Hongbo Gao, Yucheng Chen, Zhu Liu
{"title":"Influence of ion size on the charge storage mechanism of MXenes: a combination of experimental and computational study","authors":"Huiwen Wan,&nbsp;Rui Wang,&nbsp;Huiyang Fan,&nbsp;Hongbo Gao,&nbsp;Yucheng Chen,&nbsp;Zhu Liu","doi":"10.1007/s42768-023-00188-6","DOIUrl":null,"url":null,"abstract":"<div><p>MXene nanomaterials have attracted great interest as the electrode of supercapacitors. However, its energy storage mechanisms in organic electrolytes are still unclear. This work investigated the size effect of cations (i.e., Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and EMIM<sup>+</sup>) on the capacitive behaviors of MXene-based supercapacitors. The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size (i.e., from 43 F g<sup>−1</sup> (EMIM<sup>+</sup>) to 129 F g<sup>−1</sup> (Li<sup>+</sup>) at 2 mV s<sup>−1</sup>). Density-functional theory calculation reveals a correlation between cation size and ion–electrode surface interaction, supporting experimental observations of the capacitive-dominant behavior. Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size, providing dynamic insights into the experimentally observed specific capacitance trends. Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms. This finding of ion dynamics, solvation structure, and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"163 - 171"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-023-00188-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MXene nanomaterials have attracted great interest as the electrode of supercapacitors. However, its energy storage mechanisms in organic electrolytes are still unclear. This work investigated the size effect of cations (i.e., Li+, Na+, K+, and EMIM+) on the capacitive behaviors of MXene-based supercapacitors. The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size (i.e., from 43 F g−1 (EMIM+) to 129 F g−1 (Li+) at 2 mV s−1). Density-functional theory calculation reveals a correlation between cation size and ion–electrode surface interaction, supporting experimental observations of the capacitive-dominant behavior. Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size, providing dynamic insights into the experimentally observed specific capacitance trends. Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms. This finding of ion dynamics, solvation structure, and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子尺寸对二甲苯电荷储存机制的影响:实验与计算相结合的研究
摘要 MXene 纳米材料作为超级电容器的电极引起了人们的极大兴趣。然而,其在有机电解质中的储能机理尚不清楚。本研究探讨了阳离子(即 Li+、Na+、K+ 和 EMIM+)的大小对 MXene 超级电容器电容行为的影响。实验结果表明,比电容随着阳离子尺寸的减小而明显增加(即在 2 mV s-1 时,从 43 F g-1(EMIM+)增加到 129 F g-1(Li+))。密度泛函理论计算揭示了阳离子大小与离子-电极表面相互作用之间的相关性,支持了电容主导行为的实验观察结果。分子动力学模拟揭示了离子溶解结构和插层阳离子的解溶解度是溶解大小的函数,为实验观察到的比电容趋势提供了动态见解。我们的综合实验和计算研究为了解电荷存储机制中错综复杂的溶解效应提供了宝贵的见解。有关离子动力学、溶胶结构和解溶胶的这一发现可能有助于指导设计和优化基于 MXene 的超级电容器的适当离子/电解质组合。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antifouling ultrafiltration membranes based on acrylic fibers waste/nanochitosan for Congo red and crystal violet removal Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1