An electrochemical biosensor platform for kanamycin detection based on the target-induced spatial configuration of aptamer-complementary strand hybridization

Yunyun Qiu, Lingyu Jiang, Li Xiang, Jianshe Tang
{"title":"An electrochemical biosensor platform for kanamycin detection based on the target-induced spatial configuration of aptamer-complementary strand hybridization","authors":"Yunyun Qiu, Lingyu Jiang, Li Xiang, Jianshe Tang","doi":"10.1007/s00706-024-03196-2","DOIUrl":null,"url":null,"abstract":"<p>A sensitive and selective electrochemical method for the determination of kanamycin was established first at the surface of a pencil graphite-embedded PTFE cannula electrode according to the analysis mechanism of target-induced spatial configuration of aptamer-complementary strand hybridization. The electrochemical characteristics studies of homemade electrodes were using cyclic voltammetry. The result showed that the PFTE nested pencil graphite electrode with polished and gold deposits has good electrode application potential. The electrochemical analysis method for kanamycin was performed using differential pulse voltammetric techniques. Modification of the homemade electrode surface increased its DPV response of methylene blue in the presence of kanamycin because more analytes affected the aptamer-complementary strand hybridization conformation. Thus, more G-quadruplexes formed to capture methylene blue. The developed electrochemical sensor yielded a positive correlation between the electrochemical signal and the logarithmic concentration of kanamycin with a wide linear range (15.3 nM to 0.24 mM) and a low limit of detection of 10 nM. The developed sensor was assessed by the analysis of kanamycin in wastewater treatment plant effluent samples by spiked recovery method. The analysis results (recoveries range of 97.5–105% and RSD range of 2.1–7.8%, respectively) proved that the method performance was both acceptable and admirable.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-024-03196-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sensitive and selective electrochemical method for the determination of kanamycin was established first at the surface of a pencil graphite-embedded PTFE cannula electrode according to the analysis mechanism of target-induced spatial configuration of aptamer-complementary strand hybridization. The electrochemical characteristics studies of homemade electrodes were using cyclic voltammetry. The result showed that the PFTE nested pencil graphite electrode with polished and gold deposits has good electrode application potential. The electrochemical analysis method for kanamycin was performed using differential pulse voltammetric techniques. Modification of the homemade electrode surface increased its DPV response of methylene blue in the presence of kanamycin because more analytes affected the aptamer-complementary strand hybridization conformation. Thus, more G-quadruplexes formed to capture methylene blue. The developed electrochemical sensor yielded a positive correlation between the electrochemical signal and the logarithmic concentration of kanamycin with a wide linear range (15.3 nM to 0.24 mM) and a low limit of detection of 10 nM. The developed sensor was assessed by the analysis of kanamycin in wastewater treatment plant effluent samples by spiked recovery method. The analysis results (recoveries range of 97.5–105% and RSD range of 2.1–7.8%, respectively) proved that the method performance was both acceptable and admirable.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于目标诱导的适配体-互补链杂交空间构型的卡那霉素检测电化学生物传感器平台
根据靶标诱导的aptamer-互补链杂交空间构型的分析机制,首先在笔形石墨嵌入聚四氟乙烯套管电极表面建立了测定卡那霉素的灵敏和选择性电化学方法。采用循环伏安法研究了自制电极的电化学特性。结果表明,抛光镀金的 PFTE 嵌套铅笔石墨电极具有良好的电极应用潜力。卡那霉素的电化学分析方法采用了差分脉冲伏安技术。自制电极表面的改性增加了其在卡那霉素存在下对亚甲蓝的 DPV 响应,因为更多的分析物影响了合体-互补链杂交构象。因此,形成了更多的 G-四联体来捕获亚甲蓝。所开发的电化学传感器的电化学信号与卡那霉素的对数浓度呈正相关,线性范围宽(15.3 nM 至 0.24 mM),检测限低至 10 nM。采用加标回收法分析了污水处理厂出水样品中的卡那霉素,对所开发的传感器进行了评估。分析结果(回收率范围为 97.5%-105%,RSD 范围为 2.1%-7.8%)证明该方法的性能是可接受的,也是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper(II) oxide-modified screen-printed carbon electrode for electrochemical detection of tuberculosis and mycobacterial infections treating drugs: rifampicin Synthesis and antimicrobial activity of 6-iodo-2-(trifluoromethyl)-4(3H)-quinazolinone derivatives Chemophobia and AI: artificial intelligence as a possible solution in the forthcoming clash of narratives The striking influence of solubility on the nuclearity of cobalt NCN pincer complexes Enhancing the efficiency of chemical vapor generation of zinc in a multimode sample introduction system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1