Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-03-14 DOI:10.1007/s11705-024-2420-6
Tauseef Munawar, Ambreen Bashir, Khalid Mujasam Batoo, Saman Fatima, Faisal Mukhtar, Sajjad Hussain, Sumaira Manzoor, Muhammad Naeem Ashiq, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal
{"title":"Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction","authors":"Tauseef Munawar,&nbsp;Ambreen Bashir,&nbsp;Khalid Mujasam Batoo,&nbsp;Saman Fatima,&nbsp;Faisal Mukhtar,&nbsp;Sajjad Hussain,&nbsp;Sumaira Manzoor,&nbsp;Muhammad Naeem Ashiq,&nbsp;Shoukat Alim Khan,&nbsp;Muammer Koc,&nbsp;Faisal Iqbal","doi":"10.1007/s11705-024-2420-6","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec<sup>−</sup><sup>1</sup> to meet the maximum current density of 250 mA·cm<sup>−</sup><sup>2</sup>. The optimized strategy for interfacial coupling of the fabricated Cu<sub>2</sub>Se-V<sub>2</sub>O<sub>5</sub> catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu<sub>2</sub>Se and V<sub>2</sub>O<sub>5</sub>).\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2420-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu2Se-V2O5 as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu2Se-V2O5 catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec1 to meet the maximum current density of 250 mA·cm2. The optimized strategy for interfacial coupling of the fabricated Cu2Se-V2O5 catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu2Se and V2O5).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建用于碱性氧进化反应的坚固耐用的 Cu2Se-V2O5 纳米片状电催化剂
通过可扩展的水电解法降低氢等清洁能源载体的生产成本,是推动氢经济发展的潜在解决方案。在各种候选材料中,我们的研究小组展示了具有可调电子特性、各种相态和富土性的过渡金属基材料。本文报告了通过水热法使用 Cu2Se-V2O5 作为非贵金属电催化剂进行电化学水氧化的情况。在不锈钢基底上直接生长后,对所有制备的电催化剂的分水性能进行了评估。经电化学调谐的 Cu2Se-V2O5 催化剂过电位降低了 128 mV,塔菲尔斜率降低了 57 mV-dec-1,达到了 250 mA-cm-2 的最大电流密度。通过优化 Cu2Se-V2O5 催化剂的界面耦合策略,制备出了具有可访问活性位点的多孔结构,从而实现了对中间产物的吸附,并为促进氧进化反应提供了有效的电荷转移率。此外,催化剂组分的综合作用使其在碱性溶液中长期稳定超过 110 小时,这使得该催化剂有望得到大规模实际应用。复合催化剂的上述优点克服了纯催化剂(Cu2Se 和 V2O5)导电率低、团聚和稳定性差的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries Multiperiod optimization of closed seawater circulating cooling water system Formation of atomically dispersed zirconium through the utilization of nanoconfined environments Construction of CS@APP@UiO-66 through self-assembly technology as flame retardant and smoke suppressant for epoxy resins Optimizing polylactic acid: synthesis, properties, and regulatory strategies for food packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1