Simulation of heating of the sensitive element of the heat flux sensors in a high-velocity flow under variable input conditions

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Thermophysics and Aeromechanics Pub Date : 2024-03-20 DOI:10.1134/S086986432306001X
I. R. Vasnev, M. A. Goldfeld, N. N. Fedorova
{"title":"Simulation of heating of the sensitive element of the heat flux sensors in a high-velocity flow under variable input conditions","authors":"I. R. Vasnev,&nbsp;M. A. Goldfeld,&nbsp;N. N. Fedorova","doi":"10.1134/S086986432306001X","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the results of numerical simulations of high-velocity turbulent air flows in a plane channel with a variable cross section exhibiting sudden expansion with allowance for coupled heat transfer with copper plates modeling the sensitive elements of heat flux sensors. The simulations are performed for conditions of a high-enthalpy short-duration wind tunnel whose specific features are the short duration of the test regime and unsteady “falling” conditions at the model channel entrance. The wave structure of the supersonic flow, which affects the heat fluxes at the walls, is analyzed for various Mach numbers at the model channel entrance. The numerical algorithm is validated on the basis of experimental data on heating of the sensitive elements of heat flux sensors for unsteady input conditions at the channel entrance. The influence of the Mach number, static parameters, and stagnation parameters on the rate of heating of the sensitive elements located at various points in the channel is studied numerically. The heat fluxes calculated under constant and “falling” conditions at the channel entrance are compared. It is shown that the accuracy of heat flux modeling can be increased by taking into account the intensity of oscillations of the flow parameters and their changes along the channel.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S086986432306001X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the results of numerical simulations of high-velocity turbulent air flows in a plane channel with a variable cross section exhibiting sudden expansion with allowance for coupled heat transfer with copper plates modeling the sensitive elements of heat flux sensors. The simulations are performed for conditions of a high-enthalpy short-duration wind tunnel whose specific features are the short duration of the test regime and unsteady “falling” conditions at the model channel entrance. The wave structure of the supersonic flow, which affects the heat fluxes at the walls, is analyzed for various Mach numbers at the model channel entrance. The numerical algorithm is validated on the basis of experimental data on heating of the sensitive elements of heat flux sensors for unsteady input conditions at the channel entrance. The influence of the Mach number, static parameters, and stagnation parameters on the rate of heating of the sensitive elements located at various points in the channel is studied numerically. The heat fluxes calculated under constant and “falling” conditions at the channel entrance are compared. It is shown that the accuracy of heat flux modeling can be increased by taking into account the intensity of oscillations of the flow parameters and their changes along the channel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟在可变输入条件下高速气流中热流传感器敏感元件的加热过程
本文介绍了在一个横截面可变的平面通道中的高速湍流气流的数值模拟结果,该通道表现出突然膨胀的特点,并考虑了与模拟热通量传感器敏感元件的铜板的耦合传热。模拟是在高焓短时风洞的条件下进行的,该风洞的特点是试验时间短,模型通道入口处的 "下降 "条件不稳定。针对模型通道入口处的不同马赫数,分析了影响壁面热通量的超音速流波浪结构。根据热通量传感器敏感元件在通道入口处非稳定输入条件下的加热实验数据,对数值算法进行了验证。数值研究了马赫数、静态参数和停滞参数对位于通道各点的敏感元件加热速率的影响。比较了在通道入口处恒定和 "下降 "条件下计算得出的热通量。结果表明,考虑到水流参数的振荡强度及其沿水道的变化,可以提高热通量建模的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
期刊最新文献
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid Modification of the DSMC method for a macroscopic chemical reaction On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids Asymptotic decay of a far momentumless turbulent wake behind a sphere in an isotropic turbulent flow Modeling shock-wave cells at the initial region of the underexpanded supersonic jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1