Cooling efficiency enhancement using a rapid tool with a surface-cooled waterfall cooling channel

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Advanced Manufacturing Technology Pub Date : 2024-03-19 DOI:10.1007/s00170-024-13429-7
Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai, Song-Hua Huang
{"title":"Cooling efficiency enhancement using a rapid tool with a surface-cooled waterfall cooling channel","authors":"Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai, Song-Hua Huang","doi":"10.1007/s00170-024-13429-7","DOIUrl":null,"url":null,"abstract":"<p>The manufacturing technique known as investment casting has found extensive application in producing metal components featuring intricate geometries. The production efficiency of the wax patterns is an essential issue in the investment casting industry, especially for the mass production of wax patterns. A conformal cooling channel (CCC) performs the rapid uniform cooling process for injection molding. However, the significant pressure drop along the cooling channels is a distinct disadvantage of CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented. The WCC cools the injected products by surface contact, replacing the conventional line contact to cool the injected products. The WCC was optimized using Moldex3D simulation software. Rapid tools with two kinds of cooling channels were designed and implemented. The cooling time of the molded part was investigated using a low-pressure wax injection molding machine. Considering a water cup characterized by a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm, the experimental results confirmed that the use of WCC can save the cooling time of the product by about 265 s compared with the CCC. This result shows that the WCC can increase cooling efficiency by approximately 17.47% compared with conventional CCC.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13429-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The manufacturing technique known as investment casting has found extensive application in producing metal components featuring intricate geometries. The production efficiency of the wax patterns is an essential issue in the investment casting industry, especially for the mass production of wax patterns. A conformal cooling channel (CCC) performs the rapid uniform cooling process for injection molding. However, the significant pressure drop along the cooling channels is a distinct disadvantage of CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented. The WCC cools the injected products by surface contact, replacing the conventional line contact to cool the injected products. The WCC was optimized using Moldex3D simulation software. Rapid tools with two kinds of cooling channels were designed and implemented. The cooling time of the molded part was investigated using a low-pressure wax injection molding machine. Considering a water cup characterized by a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm, the experimental results confirmed that the use of WCC can save the cooling time of the product by about 265 s compared with the CCC. This result shows that the WCC can increase cooling efficiency by approximately 17.47% compared with conventional CCC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带有表面冷却瀑布冷却通道的快速工具提高冷却效率
被称为熔模铸造的制造技术已广泛应用于生产具有复杂几何形状的金属部件。蜡型的生产效率是熔模铸造行业的一个重要问题,尤其是在大规模生产蜡型时。保形冷却通道(CCC)可执行注塑成型的快速均匀冷却过程。然而,沿冷却通道的巨大压降是 CCC 的一个明显缺点。本研究提出并实施了一种创新的瀑布式冷却通道(WCC)。WCC 通过表面接触冷却注塑产品,取代了传统的线接触冷却注塑产品。通过 Moldex3D 仿真软件对 WCC 进行了优化。设计并实现了带有两种冷却通道的快速模具。使用低压蜡注射成型机研究了成型零件的冷却时间。考虑到水杯的口部直径为 70 毫米,高度为 60 毫米,厚度为 2 毫米,实验结果证实,与 CCC 相比,使用 WCC 可节省产品冷却时间约 265 秒。这一结果表明,与传统的 CCC 相比,WCC 可将冷却效率提高约 17.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
期刊最新文献
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality On a simulation-based chatter prediction system by integrating relative entropy and dynamic cutting force Modeling of the motorized spindle temperature field considering the thermos-mechanical coupling on constant pressure preloaded bearings Multi-layer solid-state ultrasonic additive manufacturing of aluminum/copper: local properties and texture Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1